Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Парафиновые углеводороды крекинг

    Термическое дегидрирование высших парафиновых углеводородов, как пропан или бутаны, с образованием олефипов, имеющих равное с исходным углеводородом число атомов С, или вообще невозможно или протекает с очень малыми выходами, так как сопровождается обычно крекингом. Однако возможно дегидрирование каталитическим путем — пропусканием сырья над смешанным катализатором (окись хрома — окись алюминия) при температуре около 500°. [c.35]


    Реакция крекинга, нри которой парафиновые углеводороды превращаются в парафин и олефин, причем сумма атомов С олефина и парафина-равна числу атомов углерода в исходном углеводороде [c.46]

    Увеличение объемов при п проливе газообразных парафиновых углеводородов. Если пропан в процессе пиролиза па 100% превращается в метан и этилен или в пропен и водород, то объем газа при этом увеличивается вдвое. Из 100 л пропана образуется 200 л продуктов реакции. Отсюда следует, что независимо от того, каково удельное значение реакций крекинга и дегидрирования, всегда образуется двойной объем продуктов реакции сравнительно с исходным. Прн 50%-ном превращении пропана из 100 л пропана образуется 150 л продуктов реакции. [c.51]

    Второй пример. При каталитическом крекинге парафинового углеводорода цетана С вНз, образуется большое число углеводородов как парафинового, так и других рядов. Это видно из следующей таблички, в которой указаны выходы продуктов крекинга цетана (в % вес.). [c.21]

    Платиновый катализатор, что для получения ароматических не очень важно, но имеет большое значение для улучшения антидетонационных свойств бензина, способствует изомеризации парафиновых углеводородов, крекингу их и гидрированию ненасыщенных продуктов крекинга (гидрокрекинг). Последние реакции представляют собой экзотермический процесс, в ходе которого используется часть водорода, освобождающегося в процессе дегидрирования. [c.104]

    Чисто термическим путем, т. е. только нагревая парафиновые углеводороды до высокой температуры, нельзя их изомеризовать. Шульце и Веллер [8] крекировали н-бутан и изобутан при 700° и 0,32 сек. времени пребывания газов в нагретой зоне, получив около 20% продуктов разложения. В продуктах крекинга н-бутана нельзя было обнаружить ни изобутана, ни изобутилена, и, наоборот, в газах крекинга изобутана н-бутан или н-бутен отсутствовал. Отсюда следует, что для изомеризации необходимо присутствие катализатора. [c.514]

    Олефины, направляемые на химическую переработку, за немногими исключениями (например, хлорирование пропилена в хлористый аллил для дальнейшего синтеза глицерина или полимеризация этилена для производства полиэтилена и др.), могут содержать значительные количества парафиновых компонентов. При химической переработке парафиновых углеводородов, наоборот, присутствия олефинов не допускается. Поэтому при применении крекинг-1 азов в качестве исходного сырья олефины необходимо предварительно или насытить путем каталитической гидрогенизации (к тому же крекинг-газы одновременно содержат заметные количества водорода), или отделить от парафинов при помощи химических процессов. После этого парафиновые углеводороды могут быть использованы для химической переработки. [c.16]


    Для этого масла должны быть освобождены от парафина. При этой операции в качестве побочного продукта получают смесь парафиновых углеводородов, которые в настоящее время приобрели столь большое промышленное значение, что на многих заводах депарафинизации масел ведется специально в целях получения парафина. Депарафинированные масла, если они не могут быть использованы как смазочные, служат сырьем для крекинга. Мировое производство парафина достигает в настоящее время 500 ООО т. [c.25]

    НОГО наполнителя при вулканизации каучука), а иногда и парафиновые углеводороды. Крекинг метана в вольтовой дуге, осуществляемый на химических заводах Хюльса, приводит преимущественно к образованию ацетилена, а также этилена и высококачественной сажи. Крайне необходимый для химической промышленности цианистый водород получают чаще всего по методу Арбузова окислением метана и аммиака воздухом иа платиновых сетках. [c.95]

    В третью пятилетку должны быть созданы заводы синтетического горючего на базе окиси углерода и водорода. Опыт полузаводской установки гидрирования водяного газа показал, что наряду с легким маслом, состоящим из бензиновых и лигроиновых фракций, образуются еще более тяжелое масло и твердые парафиновые углеводороды. Крекингом с хлористым алюминием нам удалось показать, что из парафинов получается до 60% бензиновой фракции, выкипающей от 24 до 145°, вполне предельного характера с достаточно высоким без прибавления ТЭС октановым числом. Эти, синтезом полученные парафиновые твердые углеводороды, представляют исключительно открытые цени углеродных атомов нормального строения. Когда же они подвергаются крекингу в вышеназванных условиях, то получаемый из них бензин состоит уже из углеводородов, среди которых находится значительное количество метановых углеводородов изостроения, так как только последние могли обусловливать высокое октановое число этого бензина. Поэтому приходится сделать заключение, что при крекинге имел место процесс изомеризации в сторону образования ветвистых цепей углеродных атомов. [c.350]

    Большой технический интерес представляет также переработка парафиновых углеводородов крекинг-газа до водорода и окиси углерода методом взрывной конверсии в двигателях внутреннего сгорания. Проф.. [c.350]

    Крекинг-газы, имеющие большое значение как источник получения олефиповых углеводородов для нефтехимической промышленности, не могут рассматриваться в качестве экономически выгодного сырья для получения парафиновых углеводородов. Для этого следовало бы подвергать крекинг-газы каталитическому гидрированию с использованием водорода, содержащегося в самом крекинг-газе. Так как олефины, однако, составляют основную массу крекинг-газа, то такой способ работы является по существу нецелесообразным. [c.10]

    Эти газы, как и природный газ, являются источником газообразных при нормальных условиях парафиновых углеводородов, практиче-. ски не содержащих нримеси олефинов. При осуществляемых в весьма крупных масштабах процессах крекинга и пиролиза как неизбежные побочные продукты образуются большие количества углеводородных газов, представляющих, однако, собой смесь парафиновых и олефиновых углеводородов. Этот вопрос будет подробнее рассмотрен во втором томе, посвященном олефиновым углеводородам. [c.16]

    Превращение парафиновых углеводородов (алканов). В сырье, поступающем на каталитический крекинг, содержится большое количество парафиновых углеводородов, поэтому превращения их в присутствии алюмосиликатных катализаторов заслуживают особого внимания. [c.46]

    В разделе рассматривается газовый крекинг или, иными словами, пиролиз парафиновых углеводородов, газообразных при нормальных условиях. [c.50]

    При каталитическом риформинге углеводороды нефтяных фракций претерпевают значительные превращения, в результате которых образуются ароматические углеводороды. Это—дегидрирование шестичленных нафтеновых углеводородов, дегидроизомеризация алкилированных пятичленных нафтенов и дегидроциклизация парафиновых углеводородов одновременно протекают реакции расщепления и деалкилирования ароматических углеводородов, а также их уплотнения, которые приводят к отложению кокса на поверхности катализатора. Для предотвращения закоксовывания катализатора и гидрирования образующихся при крекинге непредельных углеводородов в реакторе поддерживается давление водорода 3—4 МПа при получении высокооктанового бензина и 2 МПа — при получении индивидуальных ароматических углеводородов. [c.41]

    Этот процесс применен в Германии для получения высокомолекулярных спиртов. Для синтеза используют узкую фракцию, кипящую в интервале 15—20°. Крекинг-олефины (см. стр. 68) всегда смешаны с довольно значительным количеством кипящих в тех же пределах парафиновых углеводородов. [c.218]


    Каталитический крекинг олефиновых углеводородов в присутствии, например, алюмосиликатных катализаторов происходите гораздо большей скоростью, чом крекинг соответствующих парафиновых углеводородов кроме того, перенос водорода является основной реакцией, особенно для третичных олефинов [17]. В то же время термический крекинг олефинов происходит, примерно, с такой же скоростью, как и крекинг парафиновых углеводородов перенос водорода в этом случае представляет собой неизбирательную реакцию, имеющую значительно меньшее значение [17]. Такие факты характерны для поведения ионов карбония и свободных радикалов. Более легкий каталитический крекинг олефинов обусловлен более легким образованием ионов карбония путем присоединения протона катализатора к олефину. Перенос водорода, при котором имеет место отщепление гидридного иона от олефиновой или парафиновой молекулы. ионом карбония (правило 5), происходит легче в случае третичных ионов, чем вторичных, и является поэтому более избирательным к третичным олефинам. Соединения, являющиеся в реакции переноса донорами водорода, превращаются в диолефины, ацетиленовые и ароматические углеводороды, а также образуют отложения па катализаторе. [c.238]

    В абсолютно сухой реакционной смеси в отсутствие хлористого водорода изомеризация не происходит. Наилучшие результаты получают, если работают в присутствии 8—13% хлористого водорода (в расчете на парафиновый углеводород). Дальнейшее повышение концентрации хлористого водорода не создает особых преимуществ. При повышенной температуре вредно действуют даже меньшие концентрации хлористого водорода, потому что они уже для бутана вызывают заметный крекинг, как показано в табл. 132. [c.517]

    Выходы продуктов каталитического крекинга и их качество весьма существенно зависят от природы сырья —содержания в нем ароматических, нафтеновых и парафиновых углеводородов 16]  [c.37]

    Во-вторых, получением высокомолекулярных относительно однородных олефинов термическим крекингом парафина. Парафин из нефти, полученный синтезом Фишера-Тропша или из бурого угля, разлагается при высоком нагреве (пример 550°) в присутствии перегретого водяного пара. Образующиеся при этом олефины смешаны с парафинами, так как нри крекинге парафиновых углеводородов образуются олефины и парафины, причем сумма атомов С олефина и парафина равна числу атомов С исходного парафина. [c.61]

    Этот метод был применен для определения парафиновых углеводородов с разветвленными цепями в продуктах, полученных при крекинге с водородом над кобальтовым катализатором при температурах 180—230°. [c.44]

    Высокое октановое число получается при более глубокой конверсии за проход II обычно зависит от степени стабильности углеводородов нефти, направляемых в зону крекинга. Так, исходное сырье с низкой анилиновой точкой и низким содержанием парафиновых углеводородов, выраженным характеристическим фактором Ватсона [27, 28], может дать в результате крекинг-процесса высокооктановый бензин. На любой крекинг-установке высокая температура требуется либо для получения заданной конверсии за проход при использовании более стабильного сырья, либо для достижения большей конверсии нри заданном сырье. [c.34]

    В нредыдуш их разделах были рассмотрены способы получения олефинов дегидрированием парафиновых углеводородов без уменьшения числа углеродных атомов в молекуле. Этаи дегидрируется в этилен простым нагреванием до высокой температуры, более высокомолекулярные углеводороды, как пропан, бутан, пентан, дегидрируются каталитическим способом. Высокомолекулярные парафиновые углеводороды — гексан, гептан и т. д. — не могут быть превращены экономически приемлемым способом в олефины с раттм числом атомов С, так как в этом случае преобладают процессы крекинга. [c.49]

    Алкильная группа полностью отщепляется от кольца в виде олефина. Скорость крекинга гораздо выше, чем для парафиновых углеводородов. [c.116]

    Ипатьев, Корзон и Эглофф [39] разработали три варианта процесса полимеризации газообразных углеводородов 1) полимеризацию сырья, состоящего лз газообразных углеводородов, содержащих пропилен и бутилен 2) пиролиа таких парафиновых углеводородов крекинга, как бутаны (а также пропан),, для получения олефиновых углеводородов, которые затем каталитически превращают в полимер-бензин 3) селективную полимеризацию нормальных бутиленов и изобутилена и последующую гидрогенизацию образующихся окте-нов для получения изооктана. [c.658]

    Однако ароматические углеводороды получают из нефти главным образом путем специальных методов ее термической переработки—крекинга, пиролиза, каталитической дегидрогенизации нафтеновых углеводородов и циклизации парафиновых углеводородов. Крекинг нефти и мазута ведут обычно при температурах порядка 450—fi50°, причем крекинг в жидкой фазе проводят при более низких температурах, а парофазный крекинг—при более высоких. Пиролиз ведут при еше более высоких температурах порядка 650—800° в этом Случае образуются большие количества ароматических углеводородов. [c.222]

    Получение этилена возможно технически сравнительно простым способом — крекингом ири нормальных условиях таких газообразтлх парафиновых углеводородов, как пропан и бутап. Так, нагревая в течение корот- [c.49]

    Газовый крекинг регенеративным способом Кор-регя- Нп8сЬе-Ши1 -Уег/ак- ген) [23]. Способ пиролиза, оспованный на регенерационном принципе, применяется как для производства этилена пиролизом этапа, так и для получения ацетилена. Техническое совершенство печей системы Копперс-Хаше делает особенно выгодным применение принципа регенерации и обеспечивает максимально возможное использование тепла. Здесь могут быть достигнуты значительно более высокие температуры, чем при пиролизе в трубчатых печах, в результате чего может быть сокращено время реакции. В интервале температур 870—1110° пронан расщепляется на 85—90% с образованием 34% вес. этилена. Этан при 900—980° превращается на 75—85%, давая до 52,5% этилена. Все выходы достигаются за однократный пропуск сырья через печь и могут быть увеличены еще более нри работе с циркуляцией, т. е. когда не подвергшаяся пиролизу часть парафиновых углеводородов возвращается обратно в процесс. Табл. 27 показывает результаты полупромышленного опыта пиролиза регенеративным способом. [c.54]

    Крекинг-газы, газы швелевания и отходящее газы синтеза Фишера— Тропша содержат наряду с парафиновыми углеводородами большие или меньшие количества олефинов. Так как указанные газообразные продукты являются в первую очередь сырьем для получения олефинов, то использование их будет рассмотрено во втором томе, лосвященном олефинам. [c.17]

    Реакции, протекающие с участием комплексных соединений упомянутого выше характера, были несколько лет назад предметом подробных исследований Коха и Гильферта [26]. Последние нашли, что катализатор изомеризации (хлористый алюминий — хлористый водород) способен присоединять к ненасыщенным продуктам крекинга молекулярный водород, насыщая их таким образом. Это весьма благоприятно сказывается на стойкости самого катализатора, который в присутствии больших количеств олефинов становится неактивным. Комплекс хлористого алюминия и хлористого водорода может служить переносчиком водорода от молекулы парафина к олефину. При этом сам парафиновый углеводород становится все более ненасыщенным и, наконец, так крепко связывает хлористый алюминий, что последний становится неактивным. В присутствии водорода под давлением эта реакция тормозится или вовсе подавляется [27.  [c.522]

    Изучеитге каталитического крекинга парафиновых углеводородов показало, что скорость распада углеводородов парафинового ряда быстро растет с повышением их молекулярного веса. [c.18]

    При обычных температурах каталитического крекинга, т. е, прп 450—500°, катализаторы практически ие действуют на легкие парафиновые углеводороды — пропан п бутан. Наоборот, выеоко-кипящие парафиновые зтлеводороды подвергаются при этом глубоким превращениям. [c.18]

    Для парафиновых углеводородов характерны реакции распада. Жидкие продукты каталитического крекинга высококппящпх парафиновых углеводородов содержат значительные количества насыщенных углеводородов разветвленного строения, являющихся ценными компонентами автомобильных и авиационных бензинов. Прп термическом крекинге образуется мало таких соединений и много ненасыщенных углеводородов. [c.18]

    В присутствии катализаторов для олефинов характерны реак-пии распада, изомеризацип, полимеризации и присоединения водорода. Кроме того, протекают также такие реакции, которые приводят к образованию из олефинов ароматических углеводородов и высококипящих соединенш . Олефины подвергаются каталитическому крекингу значительно легче, чем парафиновые углеводороды. [c.19]

    При одинаковых условиях нафтены крекируются значительно быстрее, чем парафиновые углеводороды того же молекулярного веса, и по сравнению с ними дают больше легких жидких продуктов крекинга и меньше газа. В продуктах крекинга пафтенов содержится довольно много ароматических углеводородов, образующихся за счет отш,енления атомов водорода от пафтенов. [c.19]

    Крекинг протекает во времени. Чтобы получить целевые продукты в требуемых количествах, сырье необходимо выдержать определенное время при выбранной температуре в присутствии катализатора. В связи с этим важно знать не только выходы продуктов крекинга, т. е. количества образующихся из сырья легких углеводородов и кокса, но и скорости нревращения углеводородов разных рядов. Проведенными псследовапиями установлено, что в условиях каталитического крекинга наиГолее устойчивыми являются нормальные парафиновые углеводороды и ароматическпе углеводороды, молекулы которых не содержат боковых цепей. Углеводороды с тем же числом атомов углерода в молекуле, но других рядов — олефины, нафтены, ароматические уг.певодороды с длинными боковыми цепями — менее устойчивы и крекируются легко. [c.19]

    Скорость распада заметно увеличивается с увеличением молекулярного веса. Наличие пзоолефинов и изопарафинов в продуктах крекинга нормальных парафиновых углеводородов, вероятно, является следствием вторичных реакций превращения образовавшихся олефинов, так как неносредственной изомеризации метановых углеводородов, как отмечается в литературе, в присутствии алюмосиликатных катализаторов не происходит. К вторичным реакциям следует также отнести и образование ароматических углеводородов, содержание которых повышается по мере увеличения молекулярного веса исходного углеводорода и углубления процесса. [c.47]

    Экспериментальное изучение каталитического 1 рекинга показало, что при обычных режимах и одинаковых условиях процесса наиболее устойчивыми являются незамещенные ароматические углеводороды. За ними следуют парафиновые углеводороды. Значительно легче крекируются нафтено-ароматические и высокораз-ветвлейные парафиновые углеводороды и еще быстрее — нафтено-гые, а также заыеп1енные арома Ические углеводороды. Олефины наименее стойки в условиях каталитического крекинга. Образующиеся при расщеплении парафинов нормального строения л й-новые углеводороды легко изомеризуются и дальше часть их превращается в результате реакций перераспределения водорода в изопарафины. Скорость крекинга парафиновых и нафтеновых углево дородов быстро растет с увеличением молекулярного веса соеди-ненив. [c.34]

    Товарные алкилаты, получаемые большей частью путем низкотемпературного каталитического алкилирования бутенов изобутаном, являются целиком парафиновыми углеводородами. В противоположность бензинам прямой гонки и крекинг-бензинам парафиновые углеводороды алкилатов сильно разветвлены и представлены, главным образом, триметилпента-нами. Как показывает табл. I, состав их зависит от катализатора, примененного для алкилирования (Глазго и др. [3]). [c.48]

    В противоположность этому нормальные олефины могут быстро превратиться в изомерные молекулы в присутствии катализатора крекинга, причем, главным образом, через ту же иромел уточную ионную форму, которая образуется из парафина посредством отнятия гидридного иона. Поскольку крекинг олефиновых и парафиновых углеводородов идет через идентичные промежуточные продукты, создается, на первый взгляд, парадоксальное положение, когда исходные олефины изомеризуются [9, 16], а исходные парафины через те же промежуточные продукты не изомеризуются [15]. [c.128]

    Между дегидрированием бутена-1 и бутена-2 большой разницы ые наблюдается. Продукты конверсии любого из этих углеводородов содержат обычно все три изомерных нормальных бутена, что, несомненно, указьшает на смещение двойной связи. В то же время при этом образуются незначительные количества изобутилена и дегидрированием последнего получается лишь незначительное количество бутадиена. Парафиновые углеводороды, папример, и-бутан, в условиях дегидрирования бутена с добавкой водяного пара также не претерпевают заметной конверсии. Однако в случае рециркуляции заводского сырья, содержащего около 70% м-бутенов, накопление в ном изобутилена и бутанов не происходит. В неочищенном бутадиене могут присутствовать в небольших количествах такие вещества, как аллен, метилацетилен, винилацетилен, этилацетилен, бутадиен-1,2, диацетилен и димотилацетилен. В больших количествах эти продукты содержатся в бутадиене, полученном при высокотемпературном термическом крекинге. [c.206]

    В настояш,ее время кислотный характер алюмосиликатных катализаторов крекинга не вызывает сомнения. Например, такие катализаторы можно титровать едким калием или такими органическими основаниями, как хинолин. Кислотные свойства катализаторов обусловлены, вероятно, присутствием протонов на их поверхности, активной частью которой может быть либо кислота трша (НА13104)ж [62], либо атомы алюминия с дефицитом электронов [37, 61]. Обсуждение теорий, предложенных для объяснения кислотности алюмосиликатных катализаторов не является целью, настоящей главы. Для данного изложения необходимо только указать, что ион карбония Д" ", инициирующий ценную реакцию, может образоваться либо [1] в результате реакции кислотного катализатора с олефином, который образуется при начальном термическом крекинге, либо путем дегидрирования парафинового углеводорода,. либо в результате отщепления гидридного иона от молекулы парафинового углеводорода атомом алюминия с дефицитом электронов [2]. [c.236]

    В результате крекинга парафиновых углеводородов в присутствии хлористого алюминия, промотированного хлористым водородом, образуется смесь продуктов большего и меньшего молекулярных весов, чем исходный парафин. Такая реакция, известная как автодеструктивное алкилирование [24], предполагает каталитический крекинг, сопровожда-юш,ийся алкилированием путем присоединения третичного алкильного иона карбония к промежуточному олефину. [c.237]

    Термический крекинг нафтеновых углеводородов происходит по аналогичному сБободнорадикальному цепному механизму. Дополнительно-к процессам, имеющим место при крекинге парафиновых углеводородов, при крекинге нафтенов происходит дегидрогенизация (путем отщепления водорода от радикалов) до ароматических угловодородов. [c.238]


Смотреть страницы где упоминается термин Парафиновые углеводороды крекинг: [c.41]    [c.50]    [c.36]    [c.50]    [c.158]   
Технология переработки нефти и газа (1966) -- [ c.0 ]

Подготовка сырья для нефтехимии (1966) -- [ c.93 ]

Химические основы работы двигателя Сборник 1 (1948) -- [ c.107 ]

Химия и технология моноолефинов (1960) -- [ c.10 , c.225 ]




ПОИСК





Смотрите так же термины и статьи:

Крекинг углеводородов

Парафиновые углеводороды



© 2025 chem21.info Реклама на сайте