Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионный обмен влияние азотной кислоты

    Свинец—один из наиболее активных гетерогенных катализаторов. Опубликованы разные качественные характеристики этого каталитического процесса [134, 145, 146], а именно двухвалентный свинец в кислом растворе не оказывает никакого действия на перекись водорода для разложения ее требуется ш,елочная среда, в которой образуется двуокись свинца. В результате изучения [147] механизма этого катализа сделан вывод, что его можно описать как окислительно-восстановительный цикл между двухвалентным свинцом РЬ(ОН). и свинцовым суриком РЬзО . Условия высокой каталитической активности возникают тогда, когда оба эти веш,ества присутствуют как твердые фазы в сильнощелочном растворе образуются высшие окислы. Влияние различных интервалов pH можно охарактеризовать следующим образом. Азотнокислый свинец растворяется в перекиси водорода с образованием прозрачных устойчивых растворов. При добавке щелочи выпадает беловато-желтый осадок и возникает небольшая активность. При дальнейшей добавке щелочи осадок переходит в оранжево-красный и начинается бурное разложение перекиси. Как оказалось, количество щелочи, требующееся для достижения этой точки, обратно пропорционально количеству растворенного свинца на это явление накладывается еще четко не установленное влияние старения. Количество пирофосфата, требующееся для прекращения катализа, примерно эквивалентно количеству, необходимому для образования пирофосфорнокислого свинца РЬ Р О.. Каталитическая активность проходит через максимум приблизительно при 0,2 н. концентрации щелочи при более высокой концентрации возрастает растворимость свинца в виде плюмбита и плюмбата и каталитическая активность снижается. Сделана попытка [147] доказать наличие циклического процесса окисления— восстановления при помощи радиоактивных индикаторов, однако она закончилась неудачей в связи с тем, что даже в отсутствие нерекиси водорода происходит обмен между ионом двухвалентного свинца и двуокисью свинца в азотной кислоте (что соответствует литературным данны.м [148, 149]) и между плю.мби-том и плюмбатом в основном растворе (что противоречит опубликованным данным [149[). [c.401]


    Из данных приведенных таблиц видно, что, в согласии с нашими предположениями, обмен атомов водорода между ионом аммония и водой протекает замедленно, особенно при низких температурах и в присутствии свободных сильных кислот. Влияние температуры и концентрации кислоты наиболее убедительно обнаруживается в опытах с азотнокислым аммонием, высокая растворимость которого в азотной кислоте допускает изучение сильно концентрированных растворов. Менее значительное, но все же вполне явственное замедление обнаруживают сернокислый и хлористый аммоний, недостаточная растворимость которых в кислотах вынуждала ограничиваться невысокими концентрациями последних. [c.49]

    В ослаблении отрицательного действия повышенной кислотности почвы важную роль играет хорошее обеспечение растений фосфором. Систематическое внесение фосфорных удобрений снижает содержание подвижных соединений железа и алюминия в почве, так как при взаимодействии с фосфорной кислотой они переходят в нерастворимые формы. Защитное влияние фосфора объясняется также тем, что он ослабляет токсичность ионов Н и АГ в самих растениях. При хорошем обеспечении их фосфором алюминий фиксируется в корнях и уменьшается передвижение его к точкам роста и генеративным органам. Кроме того, фосфор улучшает развитие корней, углеводный и азотный обмен в растениях, закладку генеративных органов и налив зерна, и тем самым ослабляет или нейтрализует отрицательное действие повышенной концентрации ионов Н, АГ и Мп" в растворе (рис. 29). [c.134]

    Влияние концентрации азотной кислоты и нитрата кальция на коэффициент распределения показано на рис. 112. По мере увеличения концентрации нитрата растет коэффициент распределения в соответствии с реакцией (1). Максимальная величина в растворах НМОз достигается при кислотности 7,7 М, хотя, по данным Райана [623], в этих условиях доля гексанитратных форм составляет 40%. При кислотности более 7,7 М коэффициент распределения падает вследствие уменьшения активности сорбируемого иона. В растворах иитрата кальция, содержащих небольшое количество азотной кислоты, влияние реакции (2) проявляется в гораздо меньшей степени, и Kd значительно выше по сравнению с чистыми растворами азотной кислоты. Однако перевод Ри(1У) в комплексную форму при помощи солей, найри-мер Са(МОз)а, не используется в анионном обмене из-за низких скоростей сорбции плутония в этих условиях. [c.357]


    Особый интерес представляют растворы соляной кислоты, применяемые при разделении смесей на анионитах. Поскольку благодаря именно соляной кислоте, образующей с ионами металлов анионохлоридные комплексы, эти ионы спсссбны задерживаться на анионитах, казалось бы, что в ее присутствии ионы металлов по той же причине не должны сорбироваться на катионитах. Однако влияние соляной кислоты на катионный обмен не столь уже велико. Сорбционная спсссбнссть смол наиболее сильно проявляется по отношению к ионам высокого заряда именно поэтому аниониты предпочтительно сорбируют полностью координированные хлоридные комплексы как наиболее сильно отрицательно заряженные, в то время как катиониты — незакомплексованные катионы, обладающие наибольшими положительными зарядами. Эта точка зрения обсуждается более полно в гл. 11. Тем не менее для элюирования металлов, образующих устойчивые хлоридные комплексы, таких, как ртуть(П), цинк(И), кадмий(П), железо(П1) [25], цирконий(1У) [26], бериллий [27 и палладий [28], соляная кислота является более сильным элюирующим реагентом, чем азотная и серная кислоты. В присутствии серной кислоты на анионите сорбируется уран(У1),с катионита уран снимают тоже серной кислотой аналогично ведет себя и азотная кислота по отношению к торию(1У) [29]. [c.200]

    Кальций способствует росту корней. Потребность растений в нем проявляется с момента прорастания семени. Если при недостатке азота, фосфора и калия в первую очередь ослабляется развитие надземной части, то нри недостатке кальция — рост корневой системы. При отсутствии кальция во внешней питательной среде корни ослизняются и заболевают, на листьях появляются желтые пятна, нарушается углеводный и азотный обмен, затрудняется восстановление в растениях нитратов до аммиака. Кальций способствует усвоению растениями аммиачного азота, оказывает влияние на физико-химические свойства протоплазмы — ее вязкость и проницаемость, нейтрализует образующиеся в растениях органические кислоты, в частности щавелевую, устраняет или ослабляет вредное действие на растения одностороннего избытка других катионов. На кислых почвах растения часто страдают от избытка ионов водорода, алюминия, железа и марганца внесение кальция на этих почвах сни/кает их вредное действие на растения. Молодые, растущие части растения содержат мало кальция. Меньше всего кальция в семенах, больше — в листьях и стеблях, особенно стареющих. [c.29]


Смотреть страницы где упоминается термин Ионный обмен влияние азотной кислоты: [c.187]   
Химия в атомной технологии (1967) -- [ c.250 ]




ПОИСК





Смотрите так же термины и статьи:

Ионный обмен

Ионный обмен и иониты

Кислота ионная

Обмен азотный

Обмен ионов



© 2025 chem21.info Реклама на сайте