Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионный обмен между металлами и водородом

    Возникновение скачка потенциала на границе раздела фаз вызывается различными причинами, зависящими от природы граничащих фаз. Одной из наиболее общих причин будет обмен заряженными частицами. В момент появления контакта между фазами он протекает преимущественно в каком-либо одном направлении, в результате чего создается избыток частиц данного знака заряда по одну сторону границы раздела и их недостаток по другую. Такой нескомпенсированный обмен приводит к созданию двойного электрического слоя, а следовательно, к появлению разности потенциалов. Последняя в свою очередь будет влиять на кинетику обмена, выравнивая скорости перехода заряженных частиц в обоих направлениях. По мере увеличения разности потенциалов наступит момент, когда уже не будет больше преимущественного перехода частиц из одной фазы в другую, и скорости их перехода в обоих направлениях станут одинаковыми. Такое значение скачка потенциала отвечает равновесию между фазами, при котором электрохимические потенциалы заряженных частиц в обеих фазах равны. Заряженными частицами, принимающими участие в обмене между фазами, могут быть положительные и отрицательные ионы, а также электроны. Какие именно частицы переходят из одной фазы в другую и тем самым обусловливают возникновение скачка потенциала, определяется природой граничащих фаз. На границах металл — вакуум или металл 1 —металл 2 такими частицами являются обычно электроны. При создании границы металл — раствор соли металла в обмене участвуют катионы металла. Скачок потенциала на границах стекло — раствор, а также ионообменная смола — раствор появляется в результате обмена, в котором участвуют два сорта одноименно заряженных ионов. На границах стекло—раствор и катионитная смола — раствор такими ионами являются ионы щелочного металла и водорода на границе анионитная смола — раствор — ион гидроксила и какой-либо другой анион. При контакте двух не смешивающихся жидкостей, каждая из которых содержит в растворенном виде один и тот же электролит, потенциал возникает за счет неэквивалентного перехода обоих ионов электролита из одной фазы в другую подобно тому, как образуется диффузионный потенциал. Следовательно, оба потенциала — и фазовый жидкостный, и диффузионный —не являются равновесными. [c.204]


    Стеклянные электроды, предназначенные для измерения pH, перед первым применением вымачивают в растворе НС1. При этом в поверхностном слое стекла происходит обмен ионов щелочного металла на ионы водорода. В дальнейшем при измерении pH потенциалопределяющим процессом на электроде является обмен ионами водорода между раствором и стеклом  [c.237]

    Наиболее полярным из обычных растворителей является вода. Как уже известно из предыдущего (V 4), действие ее на внутримолекулярные связи сказывается настолько сильно, что многие полярные молекулы распадаются на ионы, обменные реакции между которыми протекают практически моментально. Даже в виде следов вода оказывается необыкновенно активным и разносторонним катализатором. Например, при полном ее отсутствии хлор не действует на металлы, фтористый водород не разъедает стекло, натрий и фосфор не окисляются на воздухе и т. д. Подобным же образом следы водяного пара сильно катализируют некоторые реакции разложения (СЬО и др.). Можно сказать, что если бы мы изучали вещества при полном отсутствии воды, то наши представления о химических свойствах многих элементов и соединений были бы совершенно иными, чем в настоящее время. [c.346]

    При атмосферной коррозии на металле сначала образуется водяная пленка. Она содержит некоторые растворенные вещества (соли, СО2, Нг5 и др.), и, таким образом, является электролитом. Происходящее затем разрушение металла обусловлено обменом ионами между металлом и раствором с участием электронов. Иными словами, возникают процессы, подобные происходящим в гальванических элементах. Они представляют собой совокупность катодных и анодных реакций. При анодных реакциях ионы металла из кристаллической решетки переходят в раствор. Металл заряжается отрицательно, так как в нем остаются избыточные электроны. Дальнейшее протекание процесса обусловлено удалением (нейтрализацией) этих электронов, т. е. протеканием катодных реакций. Таким процессом может быть, например, соединение электронов с ионами водорода или с газообразным кислородом по одной из следующих реакций  [c.272]

    Рассмотрим приложение этих принципов расчета на примерах коррозии цинка и железа в растворах с pH = О и активностями соответствующих металлических ионов, равными единице. В выбранных условиях потенциал цинка (если считать, что совершается только обмен его ионами -между металлом и раствором) должен отвечать его стандартному потенциалу, т. е. величине —0,76 в. Однако при таком значении потенциала этот процесс не является единственно возможным. Его величина значительно отрицательнее потенциала равновесного водородного электрода, который в растворе при pH равном нулю, составляет 0,0 в. Поэтому здесь возможно также выделение водорода со скоростью, определяемой кинетикой этой реакции на цинковом электроде. [c.464]


    Во всех указанных случаях, по нашему мнению, скорость обмена Нг — Г>2 увеличивается с ростом концентрации электронов в окисных катализаторах (табл. 7). Это означает, что во всех этих системах предварительная обработка, способствующая повышению концентрации электронов, будет приводить к увеличению скорости обменной реакций и наоборот. Бик [31] наблюдал на металлических пленках увеличение гидрогенизационной активности с уменьшением прочности связи металл—водород, используя в качестве меры прочности связи теплоту адсорбции водорода. Он предположил, что, коль скоро адсорбция водорода на окислах металлов связана с образованием положительных ионов или ковалентных связей, избыток электронов, по-видимому, будет приводить к уменьшению прочности связи. Таким образом, на основании данных Бика, можно объяснить наблюдаемое увеличение активности. Никакой прямой связи между каталитической активностью и электропроводностью ожидать нельзя, так как с увеличением концентрации электронов в катализаторе проводимость электронных полупроводников будет увеличиваться, но дырочных — уменьшаться. [c.48]

    В зависимости от применяемого типа адсорбента и характера процесса, протекающего на адсорбенте, различают адсорбционную,- ионообменную, распределительную и осадочную хроматографию. При адсорбционной хроматографии первичным актом является молекулярная или ионная адсорбция. В случае распределительной хроматографии происходит распределение растворенных веществ между подвижными и неподвижными растворителями, причем адсорбент является веществом, удерживающим неподвижный растворитель. Ионообменная хроматография основана на обмене ионов между раствором и ионообменными веществами, в качестве которых могут служить природные и синтетические алюмосиликаты и синтетические смолы. Такие вещества содержат подвижные ионы металлов, водорода или гидроксила, способные к замещению. При этом процессе катион (в анионитах) или анион (в катионитах) представляет собой единое целое и не переходит в раствор при обмене. Ионообменная хроматография на искусственных смолах является основным методом адсорбционного разделения радиоактивных элементов, в частности-продуктов деления урана. Осадочная хроматография основана иа различии в произведениях растворимости соединений, образуемых разделяемыми ионами с раствором соединений, пропитывающих наполнитель колонки. Первичным актом при этом является образование осадков. [c.23]

    В случае необходимости изменения pH, например при изучении обмена тяжелых металлов, где всегда присутствует третий ион—водород, учитывали обмен между Н" и металлами. [c.40]

    В первой части работы изучался обмен между водородом и одновалентными металлами рубидием и натрием. Этот выбор катионов был обусловлен аномально большой подвижностью иона. водорода в растворах электролитов по сравнению с подвижностью ИО НОВ рубидия и натрия. [c.65]

    При электрохимической коррозии одновременно происходят два процесса — окислительный (растворение металла) и восстановительный (выделение водорода, восстановление кислорода, выделение металла из раствора и др.). Кроме того, при электрохимической коррозии процесс растворения металла сопровождается обменом электронами и ионами между металлом и электролитом. [c.3]

    Потенциал стеклянного электрода обусловлен обменом ионов щелочных металлов, находящихся в стекле с ионами водорода из раствора. Энергетическое состояние ионов в стекле и растворе различно. Это приводит к тому, что ионы водорода так распределяются между стеклом и раствором, что поверхности этнх фаз приобретают противоположные заряды, между стеклом и раствором возникает разность потенциалов, значение которой зависит от pH раствора. Подробно теоретические основы работы стеклянных и других ионселективных электродов описаны в соответствующих монографиях. [c.120]

    Потенциал стеклянного электрода в отличие, например, от водородного и хингидронного электродов включает скачки 1 — на границе раздела стекло—исследуемый раствор 2 — на границе раздела стекло—буферный (стандартный) раствор 3 — на границе раздела буферный раствор — металл внутреннего электрода. Катионы щелочных металлов, входящие в состав стекла, хотя и в незначительной мере, но участвуют в обмене с ионами водорода раствора (константа обменного равновесия равна 10 —10 ). Однако этого вполне достаточно, чтобы между стеклом и раствором возник скачок потенциала [c.298]

    В возникновении водородной функции и отклонениях от нее в определенных щелочных растворах большую роль играет обмен ионов щелочных металлов, находящихся в промежутках кремний-кислородной решетки, на ионы из раствора, в который погружен стеклянный электрод. Стеклянный электрод отличается от рассмотренных ранее электродов тем, что в соответствующей ему электродной реакции не участвуют электроны. Электродная реакция сводится здесь к обмену ионами водорода между двумя фазами —раствором и стеклом  [c.18]


    При погружении стекла в раствор электролита ионы щелочных металлов могут обмениваться с находящимися в растворе ионами водорода, которые с силикатными анионами стекла образуют слабо диссоциированные силикатные кислоты. Этот обмен идет до установления равновесия и приводит к возникновению скачка потенциала, величина которого определяется концентрацией ионов водорода. При этом ионы и электроны не взаимодействуют между собой, т. е. окислительно-восстановительные реакции на границе электрод — электролит не происходят. Поэтому присутствие в растворе окислителей и восстановителей не влияет на величину возникающего потенциала. [c.160]

    Когда эта работа была закончена и приготовлена к печати, появилась статья Эрбахера [5] но юпросу О методе абсолютного онределения активной поверхности благородных металлов>. Метод этот основывается на том, что на активных мостах платины происходит обмен между атомами водорода и ионами более благородных металлов. [c.161]

    Заряженными частицами, принимающими участие в обмене между фазами, могут быть положительные и отрицательные ионы, а также электроны. Какие именно частицы переходят из одной фазы в другую и тем самым обусл(Звливают возникновение скачка потенциала, определяется природой граничащих фаз. На границах металл — вакуум или металл 1 — металл 2 такими частицами являются обычно электроны. При создании границы металл — раствор солн металла в обмене участвуют катионы металла (см., однако, ниже). Скачок потенциала на границе стекло — раствор, а также ионообменная смола — раствор по5 вляется в результате обмена, в котором участвуют два вида одноименно заряженных ионов. На границах стекло — раствор и катионнг—раствор такими нонами являются ноны щелочного металла и водорода иа границе анионит— раствор это ион гидроксила н какой-либо другой анион. Прн контакте двух несмешивающихся жидкостей, каждая из которых содержит в растворенном виде один и тот же электролит, потенциал возникает за счет неэквивалентного перехода обоих ионов электролита из одной фазы в другую. [c.28]

    Коэффициенты диффузии обменивающихся ионов могут значительно различаться. Например, экспериментально установлено, что когда процесс лимитируется внутренней диффузией, обмен между Н-катионитом и находящимся в растворе ионом металла идет быстрее, чем между Ме-катионитом и ионом водорода, коэффициент диффузии которого больше, чем иона металла. Но при этом, несмотря на различие коэффициентов диффузии отдельных ионов, в макроско-пическйх масштабах разделения зарядов при ионном обмене не происходит, электрические поля ионов влияют на их взаимное перемещение, система и в жидкой, и в твердой фазах остается электроней-тральной, а скорость процесса определяется скоростью взаимной диффузии ионов. [c.308]

    Для определения концентрации ионов водорода в растворах широкое применение находит также стеклянный электрод. Он представляет собой тонкую мембрану из специального стекла, в котором повышено содержание щелочных составляющих — со-едииений натрия, лития и др. Потенциалопределяющий процесс на границе раствор — стекло заключается в обмене между ионами щелочного металла, например N3+, содержащимися в стекле, [c.336]

    Эта структура предполагает цепочечное строение связь между атомами циркония через оксомостики и фосфатные группы наличие кислых фосфатных групп. Она достаточно хорошо объясняет свойства фосфатов, способность их к ионному обмену. При ионном обмене на катионы металлов замещается водород фосфатных групп после их насыщения в обмене могут принимать участие и гидроксогруппы. Фосфаты обладают высокой обменной емкостью (до 6 мг-экв/г). В сильнощелочной среде фосфатные группы замещаются на гидроксогруппы, что приводит к изменению состава. Не исключено, что фосфаты имеют циклическое строение, а связь между атомами циркония осуществляется и через гидроксомостики. [c.289]

    В сильнощелочных растворах, где концентрация ионов водорода невелика, происходит обмен между металлическими катионами стекла и раствора и стеклянный,электрод становится обратимым для катионов металла. Если взять стеклянный электрод, изготовленный из натриевого стекла, то функция фстекл = /(рН) для такого электрода может быть изображена двумя прямыми линиями она неопределенна лишь в области средних фН (рис. 33). При больших pH величина фстекл определяется концентрацией ионов На+. Ионы Ыа+ в стекле вместе с силикатными ионами образуют подобие неправильной кристаллической решетки. При удалении из этой решетки Ма+-иона его место может быть занято другим катионом. [c.201]

    Кроме того, в кислотно-основных каталитических реакциях катализаторы несомненно обменивают протоны с исходными веществами и растворителем, как показано в изотопных исследованиях с применением дейтерокислот или окиси дейтерия. При окислении окиси углерода или разложении закиси азота, катализируемом окислами металлов, применение подобным же образом указало на кислородный обмен между газами и поверхностью окислов [15]. При полимеризации замещенных олефинов типа изобутена, катализируемой трехфтористым бором с окисью дейтерия, присутствующей как сокатализатор , в полимере [16] возникают связи D — С эти реакции полимеризации протекают по ионному цепному механизму, и когда цепь обрывается, а построение молекулы полимера уже завершено, происходит регенерация катализатора, и сокатализатор содержит атомы водорода, перешедшие из мономера. Формально аналогичные свободно-радикальные реакции полимеризации ненасыщенных производных углеводородов можно инициировать фрагментами, получающимися при термическом разложении веществ типа перекиси бензоила и азо-бис-изобутиронитрила. Эти фрагменты действительно появляются в молекуле полимера, как было показано при использовании инициатора, меченного [17, 18]. [c.24]

    Потенциалы фи.к.э и фAg/Ag l не зависят от изменения pH анализируемого раствора. Изменение разности потенциалов в этой ячейке зависит только от чувствительности стеклянной мембраны к pH. Наличие двух элёктродов сравнения обеспечивает возможность измерения разности потенциалов между внутренней и внешней поверхностью мембраны. При измерениях потенциал внутренней поверхности стеклянной мембраны остается практически постоянным, а потенциал внешней поверхности зависит от pH анализируемого раствора. Прохождение тока через стекло связано с ионно-обменным взаимодействием ионов водорода и щелочных металлов. Стеклянная мембрана функционирует как электрод только при условии, если она гидратирована. Сухой стеклянный электрод теряет свою чувствительность к ионам водорода, но после выдерживания его в течение нескольких часов в воде чувствительность восстанавливается. Поверхность мембраны покрыта гидратированным слоем геля кремниевой кислоты. На внутреннем и внешнем слоях геля возникает так называемый диффузионный потенциал. При идентичности обоих слоев геля и равных значениях pH в стандартном и анализируемом растворах диффузионные потенциалы равны, но противоположны по знаку. Их суммарный потенциал равен нулю. В реальных условиях суммарный потенциал отличается от нуля — потенциал асимметрии. При измерениях pH систематически градуируют стеклянный электрод по стандартным буферным растворам с известным pH. [c.109]

    Ионный обмен. Обмен катионов между различными ионообмен-никами, включая цеолиты, и расплавами таких легкоплавких солей, как, например, нитраты, исследован довольно широко. Баррер [3] описал катионный обмен между NH4 I и безводными цеолитами. Длительное выдерживание безводных цеолитов в парах NH4 I при 300° С приводит к почти полному катионному обмену. Особым типом катионного обмена является обмен катионов металла на Н" в твердых телах. Троуп и Клирфильд [4] описали реакцию фосфата циркония с твердыми хлоридами. В процессе реакции поверхностные атомы водорода ионообменника и хлорид-ионы образуют НС1  [c.401]

    Кроме указанных неверных утверждений о методологических основах и несуществующих скрытых целях нашей работы Б. И. Степанов приводит возражения по существу ее выполнения и выводов, с которыми также нельзя согласиться. Опровергаемая нами для данного случая схема превращения по ионизационному механизму им совершенно неправильно понята, хотя в нашей статье (и в ней же цитированной более подробной предыдущей работе [41) вопрос ясно изложен. Речь идет не о кислотной диссоциации с образованием свободного водородного (или оксониевого) иона, а о протолитической реакции обратимого переноса протона между двумя молекулами. Поэтому константа электролитической диссоциации толуола в эфире не может служить критерием возможности или скорости такого переноса. В той же шкале константы электролитической диссоциации флюорена и ксантена равны 10——10 28 д,1.о де мешает им обменивать водород на дейтерий в связях С—Н по ионизационному механизму. Неверно и то, что представление о кислотных функциях толуола противоречит всем представлениям органической химии замещение в нем метильного водорода металлами хорошо известно. Столь же неосновательно утверждение Б. И. Степанова, что мы не могли заметить обмена, так как при малых величинах равновесной концентрации дейтерия и константы электролитической диссоциации обмен должен был бы дать ощутимые результаты лишь через промежутки времени, в колоссальное число раз превышающие возможности экспериментатора. Мы не знаем, на каких вычислениях основаны эти соображения (если на величине константы кислотной диссоциации толуола, то они неверны, см. выше), но они во всяком случае не имеют ничего общего с реальным химическим мышлением. Действительно, чисто формально можно допускать, что любая не подтверждаемая опытом реакция все же идет неизмеримо медленно, но ни один химик не станет искать в ней причину превращений, наблюдаемых в рамках времени, отвечающих обычным лабораторным условиям. В то же время мы нашли, что обмен не достигает 0,5% от равновесного за время до 68 ч при температуре до 168° С, тогда как нитрование в несравненно более мягких условиях (за 2 ч при 15° С) дает 8% фенилнит-рометана [51. Сопоставление этих данных ясно показывает, что реакция нитрования толуола в боковой группе не может идти через стадию таутомерного превращения по ионизационному или какому-либо иному механизму из тех, которые дают возможность для обмена с водой. Здесь же нужно отметить, что возражение Б. И. Степанова о недоказательности наших опытов из-за недостаточной точности изотопного анализа основано на элементарной ошибке. Мы указываем, что полный обмен каждого атома водорода должен был дать повышение плотности воды от сожжения на 260 у, т. е. всего на 1300—1560 у, так как в случае таутомеризации в обмене участвуют пять или шесть таких атомов (метильные, орто- и, возможно, пара-). Мы же нашли в восьми опытах — [c.169]

    Салливен, Коен и Хайндмен [49] исследовали обмен между нептунием (IV)—нептунием (V) в хлорной кислоте в зависимости от концентрации водородных ионов, концентрации ионов металла, ионной силы и температуры. Реакции обмена весьма сложны. Общая скорость обмена изменяется в зависимости от концентрации ионов водорода. Можно показать существование двух областей зависимости констант скоростей реакции от концентрации ионов водорода. Одна область—высокой кислотности, где скорость изменяется в зависимости от первой степени концентрации ионов водорода, и вторая—область низкой кислотности, где скорость реакции обратно нропорциональна второй степени концентрации водородных ионов. Уравнение общей скорости может быть написано следующим образом  [c.261]

    Реакции обмена углеводородов с дейтерием на напыленных пленках металла изучены довольно подробно, и в некоторых случаях удалось установить основные стадии процесса [1, 2]. Известно всего несколько работ но исследованию обмена углеводородов с дейтерием на окисных катализаторах, и механизм этого процесса на окислах еще не совсем ясен. Ларсон и Холл [3] показали, что изотопный обмен между СВ4 и СИ4 на окнси алюминия нротекает через поверхностные гидроксильные ионы, только небольшая доля которых участвует непосредственно в реакции обмена. Трохимец и Маркевич [4] нашли, что обмен этана с дейтерием на окиси алюминия осуществляется по простому ступенчатому механизму, причем на каждой стадии обменивается один атом водорода. Некоторые исследователи обнаружили, что окись алюминия более активна в реакции обмена водорода с дейтерием, чем окнсь алюминия, содержащая ЗЮз [3, 5]. [c.361]

    В качестве индикаторного электрода часто используется так называемый стеклянный электрод. Он представляет собой тонкостенный стеклянный шарик, внутри которого помещен электрод сравнения, например хлорсеребряный. Стекло является переохлажденным раствором силикатов, содержащим катионы щелочных металлов и анионы типа 510з . Стеклянный шарик предварительно выдерживается в крепком растворе кислоты, где происходит обмен катионами между стеклом и раствором и стекло насыщается ионами водорода. При определении pH в исследуемый раствор опускается стеклянный электрод и еще один электрод сравнения. В результате образуется следующая цепь  [c.247]

    Из сопоставления следует, что все они являются частными случаями этого уравнения. Уравнение Грегора зачитывает только изменение степени набухания при замене одного иона на другой, т. е. учитывает только четвертый член уравнения (VII, 102). Уравнение Самсонова в явной форме учитывает только изменение ион-дипольного взаимодействия при обмене ионов, т. е. учитывает третий и частично четвертый член уравнения (VII,102). Уравнение Бойда, Шуберта, Адамсона и уравнение Сакаки Томихоко учитывают только изменение диэлектрической проницаемости. Наконец, уравнение Панченкова и Горшкова, выведенное ими для характеристики обмена иона водорода на ионы металлов, учитывает третий, четвертый и пятый члены уравнения (VII,102) и эквивалентно частному случаю для обмена ионов металла при условии, когда взаимодействие между ионами и ионогенными группами можно рассматривать как ионную ассоциацию. Ни одно ранее нредложен-ное уравнение не учитывает влияния основности растворителей на обмен иона водорода и ионов лиата и ни одно уравнение не учитывает молекулярно-адсорбционные свойства ионитов. [c.376]

    Сульфиды 5-элементов имеют смешанный тип хими ческой связи ионную между атомами металла и серы ковалентную между атомами серы (в полисульфидах) Для этих сульфидов характерны полупроводниковые свойства. Сульфиды - и /-элементов характеризуются преимущественно металлическим характером связи атомов серы и металла, и свойства варьируют от метал лических (2г5, Т18, ЬаЗ) до полупроводниковых (Т132 МоЗг, СезЗз). Сульфиды р-элементов — преимущест венно ковалентные полупроводники (Т З, РЬ8, В128з) Большое значение в металлургии имеют а) реак ции металлов с водой и кислотами б) реакции обмен иого взаимодействия с соединениями других металлов Химизм вытеснения водорода из воды, разбавлен яых кислородных и бескислородных кислот и щелочей сводится к восстановлению водорода  [c.220]

    Среди других осуществленных реакций обмена наибольший интерес представляют те, в результате которых получены фторза-мещенные. Есть обзор, посвященный рассмотрению этих реакций [88]. Для нх проведения применяют главным образом фтористый калий, фтористый цинк, фтористую сурьму, фтористый водород или трехфтористый бром (пример 6.5). Присутствие небольшого количества соли пятивалентной сурьмы, приводящее к образованию так называемого реагента Шварца, часто увеличивает скорость реакции и улучшает выход. Этот реагент обычно получают, добавляя свободный галоген, часто хлор, к трехфтористой сурьме. Хотя реакцию между галогенпроизводным и фторидом металла можно проводить при высокой температуре и, если нужно, под давлением, во многих случаях методику можно упростить, применяя растворитель при обычном давлении. При получении ряда фтористых алкилов из бромистых путем взаимодействия с фтористым калием в этиленгликоле выходы составляют 27—46% [89]. В ряду ароматических галогенпроизводных обмен галогена между арилгалогенидом и ионом фтора осуществляется лишь при активировании электроотрицательными заместителями, такими, как нитрогруппа в орто- или лара-положении [90]. Выходы при взаимодействии ряда о- или п-моно- [c.385]


Смотреть страницы где упоминается термин Ионный обмен между металлами и водородом: [c.577]    [c.209]    [c.214]    [c.800]    [c.159]    [c.159]    [c.155]    [c.209]    [c.214]    [c.451]    [c.9]    [c.90]    [c.174]   
Массопередача (1982) -- [ c.570 , c.595 ]




ПОИСК





Смотрите так же термины и статьи:

Водорода ионы

Ионный обмен

Ионный обмен водорода

Ионный обмен и иониты

Металлы водородом

Обмен ионов



© 2025 chem21.info Реклама на сайте