Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплота реакции, растворения, адсорбции и смачивания

    Теплоты реакции, растворения, адсорбции и смачивания [c.78]

    ТЕПЛОТА РЕАКЦИЙ РАСТВОРЕНИЯ, АДСОРБЦИИ И СМАЧИВАНИЯ [c.107]

    КАЛОРИМЕТРИЯ — совокупность методов измерения количества теплоты, выделяющейся или поглощаемой в различных физич. или химич. процессах. Методы К. применяют при определении теплоемкости, тепловых эффектов химич. реакций, теплот фазовых переходов, растворения, смачивания, адсорбции, радиоактивного распада и др. Калориметрич. методы играют важнейшую роль в определении термодинамич. параметров химич. реакций и фазовых переходов и термодинамич. свойств раз.личных веществ (энтропии, изотермич. потенциалов и др.). Методы К. широко применяются в пром-сти для определения теплотворной способности топлива и т. д. Данные К. имеют большое практич. значение для составления тепловых балансов, напр, при проектировании про- [c.181]


    При таком широком использовании термохимических данных часто кроме тепловых эффектов химических реакций бывает необходимо знать еще целый ряд тепловых величин теплоты растворения, смешения, разбавления, смачивания, адсорбции теплоемкости теплоты фазовых переходов. Определение этих величин также обычно входит в задачу термохимии. Наряду с глубокой связью между тепловыми величинами дополнительным основанием для такого объединения являются сходство методов экспериментального определения этих величин, а во многих случаях и общие принципы построения измерительной аппаратуры. В настоящей статье понятие термохимия используется в обычном смысле, т. е. с включением в него всех перечисленных выше величин. [c.311]

    Приведенный выше материал рассматривался в связи с общими факторами, имеющими значение при ионообменных реакциях (физико-химические и структурные свойства адсорбента и адсорбтива). Как известно из многочисленных примеров, немалую роль в адсорбционных процессах играет растворитель, свойства которого влияют на скорость процесса и установление окончательного равновесия. До сих пор недоставало экспериментальных результатов, чтобы выяснить внутреннюю связь между физическими и химическими константами растворителя и устанавливающимся равновесным распределением. В последних работах пытались найти зависимость между адсорбированным количеством и диэлектрической постоянной растворителя , его дипольным моментом, теплотой смачивания, выделяющейся при контакте растворителя с адсорбентом, изменением поверхностного натяжения, вызванным адсорбированным веществом на поверхности раздела вода — растворитель. До недавнего времени два основных типа адсорбции — молекулярную и ионообменную — четко не разделяли. Разбросанный экспериментальный материал, приведенный в литературе (краткий обзор дан в статье Фукса Успехи хроматографических методов в органической химии ), к сожалению, недостаточно характеризует системы ни относительно адсорбента, ни относительно адсорбтива, так что часто нельзя принять правильного решения даже относительно имеющего место типа адсорбции. Вообще на основе этого ограниченного материала об обменных реакциях в неводных растворителях можно сказать, что электролиты, растворенные в жидкостях, подобных воде (спирт, ацетон), при контакте с ионитами ведут себя, как правило, так же, как в водных растворах. Но иногда последовательность расположения ионов изменяется в зависимости от прочности связи с обменником и тем са.мым вытесняющей способности иона. Еще меньше систематических исследований по обменной адсорбции в жидкостях, несходных с водой (бензол и др.). Однако интересно отметить, что незначительная добавка воды к бензолу, вызывая незначительную диссоциацию, способствует обменной адсорбции. Очевидно, также растворимость воды в соответствующем растворителе имеет значение для из- [c.352]


    Определение величины поверхности необходимо при всех количественных исследованиях скоростей гетерогенных процессов. Поверхность между двумя несмешивающимися жидкими фазами обычно может быть точно определена на основании простых геометрических соображений, тогда как определение величины поверхности твердых веществ часто оказывается затруднительным из-за ее сложной формы. Для определения величины поверхности твердых тел применяется целый ряд методов, в том числе два метода с применением радиоактивных индикаторов. Один из этих методов, называемый методом поверхностного обмена, основан на гетерогенной реакции обмена между ионами, находящимися на поверхности твердого вещества, и ионами в растворе (см. гл. 1). Другой метод, а именно метод эманирования, основан на выделении радиоактивных атомов инертного газа через поверхность твердого вещества (см. гл. IX). Обзор исследований, посвященных этим методам, приведен в статьях Цименса (24, 214]. Здесь не будет дано описания других методов, не основанных на применении радиоактивности (измерения с помощью микроскопа, использования явлений адсорбции газов, адсорбции красителей, поляризации электродов, определения скорости растворения, проницаемости, теплоты смачивания, оптической интерференции, диффракции рентгеновских лучей, теплопроводности), обзор которых был сделан Брунауэром [В82]. [c.254]


Смотреть страницы где упоминается термин Теплота реакции, растворения, адсорбции и смачивания: [c.61]   
Общие свойства и первичные методы переработки нефти и газа Издание 3 Часть 1 (1972) -- [ c.78 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбции теплота

Адсорбция теплота теплота адсорбции

Реакции растворения

Смачивание

Теплота растворения

Теплота реакции

Теплота смачивания

Теплота смачивания и адсорбций



© 2024 chem21.info Реклама на сайте