Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фуканы

    Переход электрической энергии в тепловую может послужить импульсом воспламенения при перегрузке, больших переходных сопротивлениях, коротком замыкании, проявлении токов Фуко. [c.206]

    Воспламенение сгораемых изолирующих оболочек проводов может также произойти п( и перегреве металлических масс в сердечниках трансформаторов, якорях динамомашин под действием индуктивных токов Фуко. [c.207]


    В этом случае при конструировании печей-теплогенераторов используется способность переменного тока создавать переменное магнитное поле и как следствие индуцировать в материалах, обладающих маг- нитной проницаемостью, токи, в частности вихревые (токи Фуко), характеризующиеся движением свободных элект- 2 ронов по замкнутым контурам. С точки зрения магнитной проницаемости все тела разделяются на два класса ферромагнетики (железо, сталь, чугун, никель, кобальт и неко-горые сплавы) и парамагнетики. Магнитная проницаемость различных парамагнетиков маЛо отличается и при практических расчетах принимается равной и—1-10 Г/м, т. е. близкой к магнитной проницаемости вакуума ()11а= 1,256-10 Г/м). [c.204]

    При индукционном нагреве если ось. индуктора будет совпадать с осью объекта, то вихревые токи Фуко будут располагаться по замкнутым контурам в поперечном сечении проводящего тела, пронизывая внешние 50% продольного сечения тела. [c.211]

    Так как магнитный поток способен возбуждать в самом сердечнике токи Фуко, которые разогревают сердечник и вызывают потери энергии в окружающую среду, то подобные печи строятся низкочастотными (50 Гц). Для того чтобы канальная индукционная печь могла работать, канал должен быть электрически замкнутым, т. е. в нем всегда должен находиться слой расплавленного металла ( болото ), в который загружается твердая шихта. Объясняется это тем, что при заполнении канала твердой кусковой шихтой его электрическое сопротивление может оказаться чрезмерно большим. [c.217]

    Если расположить первичную катушку индуктора возможно ближе к металлу, находящемуся в тигле индукционной печи, то возможно магнитное поле в значительной степени сосредоточить в указанной емкости и свести к минимуму потери из-за рассеивания магнитного поля. Магнитное поле в металле, загруженном в тигель, приводит к возникновению в нем токов Фуко вне зависимости от того, будет металл находиться в твердом или жидком состоянии. Поэтому для пуска подобных индукционных печей нет необходимости иметь в них жидкий металл ( болото ). [c.218]

    Последним значительным усовершенствованием в этой методике оказалось применение принципа Фуко—Теплера для определения границы движущейся фракции белка. Этот принцип используется в оптической технике для оценки качества изготовленных линз. Для ознакомления с этим принципом обратимся к схеме на рис. 83. [c.134]

Рис. 84. Схема использования принципа Фуко— Рис. 84. Схема использования принципа Фуко—

    В 1856 г. английский химик В. Перкин-старший (1838—1907) при окислении анилина получил вещество (мовеин) красивого фиолетового цвета, которое оказалось краской, пригодной для окрашивания тканей. Это был первый анилиновый краситель, который стали изготовлять в промышленном масштабе В том же году Я. Натансон в химической лаборатории Дерптского университета выделил из неочищенного анилина другую ценную краску — фук-си i ярко-красного цвета. [c.240]

    Для снятия поляризационных кривых в простейшем случае применяют вращающийся механический коммутатор. Однако при большой скорости вращения контактные пластины коллектора коммутатора могут замкнуться через искровой разряд в момент разрыва поляризующей цепи некоторое искажение результатов возможно также из-за токов Фуко, возникающих при включении и выключении тока. [c.311]

    Для ферромагнетиков д. — сложная функция Я (см. гл. VI), поэтому теоретически описать последействие (магнитная вязкость) ферромагнетиков очень трудно. В связи с этим обсудим явление лишь в общих чертах, не рассматривая при этом токи Фуко. [c.348]

    Возникновение токов Фуко сопровождается диссипацией энергии, выделяющейся в виде джоулева тепла оно и вызывает разогрев проводника. [c.357]

    Резко упрочняет с потерей пластичности. Повышает сопротивление корро нни. Придает особые электротехнические свойства увеличивает электросопротивление, уменьшает потери на токи Фуко [c.17]

    Активно раскисляет. Повышает прочность и твердость стали и уменьшает вязкость (особенно при содержании более . 5%). Понижает теплопроводность и значительно повышает электросопротивление. Вследствие большой магнитной проницаемости и высокого электросопротивления значительно уменьшаются потери на токи Фуко и ватные потери. Увеличивает сопротивляемость окислению при высоких температурах. Способствует обезуглероживанию. Повышает кислотоупорность (при 81 > 12%). Увеличивает прокаливаемость [c.17]

    В последнем случае в сопротивлении возникает ток и, в частности, вихревые токи Фуко, что приводит к разогреву сопротивления. [c.254]

    Токи высокой частоты. Воздействие токами высоких частот или сокращенно ТВЧ (0,15-300 МГц) связано с возбуждением внешним электромагнитным полем в веществах в зависимости от их свойств, токов проводимости (вихревые токи Фуко) и токов смещения в диэлектриках. Протекание этих токов вызывает индукционный и соответственно диэлектрический нагрев материалов [14]. Существенный вклад в теорию и практику индукционного и диэлектрического нагрева внесли советские ученые В.П. Вологдин, Г.И. Бабат, A.B. Нету-шил, A.B. Донской и др. [c.82]

    Индукционное нагревание. Этот способ нагревания электрическим током основан иа исгюльзовании теплового эффекта, вызываемого вихревыми токами Фуко, возникающими в толщине стенок стального аппарата под воздействием переменного электрического поля. Аппарат с индукционным электронагревом подобен трансформатору, первичной обмоткой которого служат индукционные катушки, а магнитопроводом и вторичной катушкой — стенки аппарата. [c.322]

    Мгновенные фотографии течення в решетке, полученные на приборе Теплера — Фуко с помощью цилиндрической оптики, приведены на рис. 10.72. [c.97]

    В конце 30-х годов в области электрофореза наметилось новое направление, сыгравшее большую роль в изучении физикохимических свойств некоторых коллоидных систем и очень быстро развивающееся в настоящее время. Это направление связано с усовершенствованиями макроскопического метода электрофореза, сделанными Тизелиусом, Мак-Иннесом, Лонгсвордом и другими исследователями для применения электрофореза к анализу сложных белковых систем. Усовершенствования включали четыре основных момента 1) получение четкой границы между золем и боковой жидкостью, 2) подавление теплового эффекта в опыте, 3) выделение отдельных фракций белков в чистом виде, 4) применение метода Фуко—Тендера для определения границы движущихся в электрическом поле отдельных фракций белка по показателю преломления света. [c.132]

    Однако рассматриваемый метод имеет некоторые недостатки. При большой скорости вращения возможно замыкание контактных пластин коллектора коммутатора через искровые разряды в момент разрыва поляризующей цепи. Кроме того, в момент выключения тока возникают экстратоки (токи Фуко), появление которых искажает истинную величину потенциала поляризованного электрода. Применение этого метода связано с трудностями, которые обусловлены тем, что после поляризации электрода током большой плотности (десятые доли ампера на квадратный сантиметр) поляризация после выключения тока падает настолько быстро, что даже через 10 сек потенциал электрода сильно отличается от его значения при прохождении тока. [c.256]

    Другая характерная реакция альдегидов— реакция с фук-синсернистой кислотой. При встряхивании пробирки, содержащей фуксинсернистую кислоту и альдегид, наблюдается появление красного ил и фиолетового окрашивания. [c.285]

    Максвелл попытался объединить законы электричества и магнетизма. Основываясь на математических расчетах, он показал, что такое объединение возможно, если одновременно с переменным магнитным полем существует подобное электрическое поле и наоборот, а направление распространения волн перпендикулярно плоскости, в которой колеблются векторы напряженности электрического и магнитного полей. Мы не будем здесь рассматривать все следствия уравнений Максвелла, но одно из них является для нас очень важным. Скорость распространения электромагнитных волн Максвелла в вакууме численно равна скорости света в вакууме, которая была определена Рёмером (1675 г.), Физо (1849 г.) и Фуко (1862 г.). Этот поразительный результат (1865 г.) со всей очевидностью подтвердил, что свет является электромагнитной волной, но не привлекал большого внимания до тех пор, пока Герц не продемонстрировал (1887—1888 гг.) предсказанное Максвеллом распространение волн в системах, включающих осциллирующие электрическое и магнитное поля. [c.28]


    В этой связи следует указать, что ЭК- и МК-системы могут в принципе не иметь собственных потерь. Их эффективность определяется только техническими потерями— внутренними и внешними. К внутренним с1 относятся потери из-за нагрева токами Фуко и от гистерезиса. Методы снижения потерь от вихревых токов известны из электротехники. Аналогичные задачи возникают, например, при проектировании трансформаторов. Гис-терезисные потери существенны только при достаточно больших значениях Н и Е в ферромагнетиках и С егнетоэлектриках. Следовательно, чгобы свести к минимуму эти потерн, надо работать при напряженностях магнитного или электрического полей, не превышающих определенных, оптимальных для каждого случая значений. [c.299]

    При проведении прочностных расчетов деталей АТпВД необходимо знать модуль упругости коне фук-ционных материалов (табл. 5.11). [c.133]

    Выше была приведена структура Ь-фулозы. а) Капая это форма а пли р б) Нарисуйте структуры Хеуорса а- п р-В-фукозы. в) Нарисуйте проекции Фишера ациклических О- н Ь-фуко 1. [c.454]


Библиография для Фуканы: [c.203]    [c.221]   
Смотреть страницы где упоминается термин Фуканы: [c.379]    [c.379]    [c.468]    [c.241]    [c.63]    [c.97]    [c.131]    [c.691]    [c.169]    [c.259]    [c.40]    [c.202]    [c.24]    [c.325]    [c.357]    [c.357]    [c.401]    [c.513]    [c.46]    [c.180]    [c.276]   
Химический энциклопедический словарь (1983) -- [ c.640 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.640 ]




ПОИСК







© 2025 chem21.info Реклама на сайте