Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрический ток

    В XIX в. проблемой получения фтора занимались многие химики, начиная с Гемфри Дэви. Успех выпал на долю французского химика Анри Муассана (1852—1907). Муассан решил, что поскольку платина относится к числу тех немногих веществ, на которые фтор не действует, то не остается ничего другого, как изготовить, несмотря на дороговизну, все оборудование из платины. Более того, чтобы понизить активность фтора, он охладил реакционную смесь до —50°С. Поместив раствор фторида калия в плавиковой кислоте в специально изготовленный платиновый сосуд, Муассан пропустил через раствор электрический ток и достиг цели. Так в 1886 г. был наконец выделен бледно-желтый газ — фтор. [c.142]


    Глава 13. Химическое действие электрического тока [c.278]

    В 1800 г. итальянский физик Алессандро Вольта (1745—1827) сделал важное открытие. Он установил следующее два куска металла (разделенные растворами, способными проводить электрический заряд) можно расположить таким образом, что по соединяющей их проволоке пойдет ток электрических зарядов , или электрический ток. Вольта сконструировал первую электрическую батарею, представлявшую собой столб из 20 пар металлических пластинок двух разных металлов. Такая батарея, известная под названием Вольтова столба, явилась первым источником постоянного тока. Электрический ток в такой батарее образуется в результате химической реакции, в которой участвуют оба металла и разделяющий их раствор. [c.58]

    Через одни материалы электрический ток протекает легче, через другие труднее. Так, через металлы ток проходит легко даже при небольшом электрическом потенциале, и металлы относят к классу проводящих материалов — проводников. Чтобы через стекло, слюду или серу прошел ток даже небольшой силы, необходим огромный электрический потенциал эти и подобные и.м материалы называю непроводящими материалами — изоляторами. [c.145]

    Если через электрохимическую систему проходит измеримый электрический ток Л оиа перестает быть термодинамически обратимой и в завнсимости от направления тока превращается либо в гальванический элемент (э), либо в электролитическую ванну (в). Полезная работа, произведенная системой в необратимых условиях, всегда меньше, чем в состоянии равновесия. Электрическая энергия, генерируемая гальваническим элементом за счет протекания в ней электрохимической реакции, будет поэтому при отборе тока I меньше, чем в состоянии равновесия (т. е. нри / = 0)  [c.22]

    В сущности Николсон и Карлайл при помощи электрического тока разложили воду на водород и кислород. Другими словами, они впервые провели электролиз воды. Если Кавендиш соединил водород и кислород в воду, то Николсон и Карлайл осуществили [c.58]

    Из приведенных данных следует, что эффективные коэффициенты диффузии изменяются с концентрацией, причем эта зависимость проходит обычно через минимум, положение которого зависит от природы электролита. Уравнения (6.12) и (6.36) передают эту зависимость более или менее верно в области весьма разбавленных растворов в более широкой области концентраций она не может быть сведена к изменению коэффициента активности с концентрацией. По-видимому, такой характер зависимости коэффициента диффузии от концентрации обусловлен тем, что из-за специфики диффузионного процесса силы взаимодействия между частицами проявляются в нем по-иному, чем в состоянии равновесия или при прохождении электрического тока. В отличие от равновесного раствора с его хаотическим движением всех частиц, при котором центральный ион и ионная атмосфера могут перемещаться как в одном и том же, так и в противоположных направлепиях, при диффузии наблюдается направленное перемещение нонов, накладывающееся на их тепловое движение. [c.145]


    Если в результате химической реакции возникает электрический ток, то естественно предположить, что и электрический ток может изменять материю и вызывать химическую реакцию. И действительно, всего через шесть недель после первого описания Вольтой своей работы два английских химика — Уильям Николсон (1753—1815) и Энтони Карлайл (1768—1840) продемонстрировали наличие такой обратной зависимости. Пропустив электрический ток через воду, они обнаружили, что на электропроводящих полосках металла, опущенных в воду, появляются пузырьки газа. Как выяснилось, на одной из полосок выделяется водород, на другой — кислород. [c.58]

    Изучая влияние электрического тока на химические вещества, ученые смогли выделить ряд новых элементов. Вообще за полтора века, прошедшие с того времени, когда Бойль ввел понятие элемент (см. гл. 3), было открыто поразительно много веществ, отвечающих этому определению. Более того, было установлено, что некоторые простые и сложные вещества содержат неоткрытые элементы, которые химики не могли пока ни выделить, ни изучить. [c.65]

    Равновесие последней реакции смещено, как правило (за исключением очень разбавленных растворов), влево, поэтому ионогены в водных растворах обычно слабые электролиты и плохие проводники электрического тока. [c.48]

    Однако английский химик Гемфри Дэви (1778—1829) решил, что если вещество нельзя разложить химическим путем, то, возможно, это удастся осуществить под воздействием электрического тока ведь таким способом удалось разложить даже молекулу воды. [c.66]

    Реально существующие частицы, благодаря которым электрический ток проходит через раствор или расплав, Фарадей назвал ионами (от греческого iov — идущий). Ионы, перемещающиеся по направлению к аноду, он назвал анионами, а ионы, перемещающиеся по направлению к катоду,— катионами. [c.67]

    Как известно, между положительно и отрицательно заряженными точками устанавливается электрический потенциал (электрическое напряжение). Под действием такого напряжения заряды перемещаются от точки с большим потенциалом к точке с меньшим потенциалом. Таким образом возникает электрический ток, который стремится выравнять разность потенциалов между двумя точками электрического поля. [c.145]

    Крупнейшим физико-химиком на рубеже XIX—XX вв. наряду с Вант-Гоффом и Оствальдом был шведский ученый Сванте Август Аррениус (1859—1925) Еще будучи студентом Упсальского университета, Аррениус заинтересовался электролитами, т. е. растворами, способными пропускать электрический ток. [c.118]

    Как известно, молекула хлорида натрия состоит из двух, а молекула хлорида бария — из трех атомов, и Аррениус пришел к мысли, что при растворении в растворителях, подобных воде, определенная часть молекул распадается на отдельные атомы. Более того, поскольку эти распавшиеся молекулы проводят электрический ток (в то время как молекулы, подобные молекуле сахара, не распадаются и не проводят электрический ток), Аррениус предположил, что молекулы распадаются (или диссоциируют) не на обычные атомы, а на атомы, несущие электрический заряд. [c.119]

    И все-таки приложив достаточный электрический потенциал, можно пропустить ток через любой материал — твердый, жидкий и газообразный. Первые исследователи электричества в своих еще не очень серьезно обоснованных экспериментах установили, что некоторые жидкости, например растворы солей, проводят электрический ток сравнительно легко. Молния — электрический разряд, образующийся во время грозы,— мгновенно распространяется через толщу воздуха в несколько километров. [c.145]

    На протяжении всего XIX в. атом считался неделимым, лишенным каких-либо характерных особенностей и не имеющим внутренней структуры. Однако после проведения ряда экспериментов, которые по своей природе даже не были химическими, эта точка зрения была отвергнута. К ломке старых представлений привело изучение электрического тока. [c.145]

    Экспериментаторам XIX в. представлялось весьма заманчивым попытаться пропустить ток через вакуум. Но чтобы результаты такого эксперимента были надежными, необходимо было получить достаточно глубокий вакуум. Попытки Фарадея пропустить электрический ток через вакуум окончились неудачей только потому, что ему не удалось получить достаточно глубокого вакуума. [c.147]

    Плюккер впаял в трубки два электрода, создал между ними электрический потенциал и получил электрический ток. Под действием тока в трубках возникало свечение ( эффект накаливания ), характер которого зависел от глубины вакуума. При достаточно глубоком вакууме свечение в трубке исчезало, и только вблизи анода было заметно зеленое свечение стекла трубки. [c.147]

    После окончания обработки хромовой смесью (или другими назьанными выше реактивами) сосуд следует тщательно вымыть водс1проводной водой и, наконец, ополоснуть изнутри несколько раз небольшим количеством (5—10 мл) дистиллированной воды. Вытирать сосуд изнутри полотенцем не следует, так как при этом он неизбежно снова загрязнится. Вообще химическую посуду вытирают только снаружи, если же она должна быть сухой также и внутри, ее помещают в специально предназначенный для этой цели сушильный шкаф, обогреваемый газовой горелкой или электрическим током. Однако обычно в этом нет необ-ход-шости. [c.47]

    Фотоэлектрический эффект характерен для многих металлов, причем металлы испускают электроны под действием света даже в отсутствие электрического тока или электрического заряда в непосредственной близости от них. Этот факт дал повод предполагать, что атомы металлов (а возможно, и атомы вообще) содержат электроны. [c.150]

    Водяная баня (рис. 19,й) представляет собой металлический сосуд с одним или несколькими отверстиями (закрываемыми конфорками различного диаметра) для чашек, наполненный водой, которую нагревают до кипения газовыми горелками или электрическим током. [c.139]


    Из установленных Фарадеем законов электролиза вытекало, что электричество, подобно веществу, обусловлено существованием, движением и взаимодействием мельчайших частиц (см. гл. 5). Фарадей вел речь об ионах, которые можно рассматривать как частицы, переносящие элекфичество через раствор. Однако в течение следующего полустолетия ни он и никто другой не занимался серьезно изучением природы таких ионов, хотя работы в этом направлении вообще-то велись. В 1853 г. немецкий физик Иоганн Вильгельм Гитторф (1824—1914) установил, что одни ионы перемещаются быстрее других. Это наблюдение привело к появлению понятия число переноса — характеристики, зависящей от скорости, с которой отдельные ноны переносят электрический ток. Однако даже после того, как химики научились рассчитывать эту скорость, вопрос о природе ионов оставался открытым. [c.118]

    Законы Фарадея легко объяснить с точки зрения современных представлений о сущности процесса электролиза. Как известно, электрический ток в растворах переносится исключительно ионами, которые при электролизе перемещаются к противоположно заряженным электродам и разряжаются на них. Отсюда следует, что чем больше электричества пройдет через раствор, тем большие количества соответствующих веществ выделятся на электродах (первый закон Фарадея). [c.425]

    На следующий день я сообщил, что готов провести семинар и что предложенная задача имеет красивое продолжение, которое можно будет развить на семинаре. Продолжение действительно было если через расплав пропустить электрический ток и действовать при этом электромагнитным полем, можно управлять формой поверхности расплава, а следовательно, и формой стеклянного листа. Я с нетерпением ждал ответа. Он пришел недели через две и гласил у наших сотрудников нет времени на проведение данного семинара. Слово данного , по-видимому, означало столь несерьезного . [c.81]

    Международная система единиц включает 6 основных единиц (длины — метр, массы — килограмм, времени — секунда, термодинамической температуры — градус Кельвина, силы электрического тока — ампер и силы света — свеча), 2 дополнительные единицы (плоского угла — радиаи и телесного угла — стерадиан) и 27 важнейших производных единиц. [c.6]

    Аналогичны и приемы экономного введения полей используют внешние поля, мобилизуют поля,. имеющиеся в системе. Вспомните, например, задачу 5.4 поле центробежных сил получено за счет механического поля движения потока. В некоторых сильных изобретениях поля образуют почти из ничего . Так, по а. с. 504932 электрический ток в сигнализаторе уровня жидкости возникает в результате контакта корпуса сигнализатора с поплавком — они выполнены из разнородных металлов, образующих при замыкании холодный спай термопары. [c.120]

    Реагенты, а также ионизированные или способствующие ионизации реагентов вещества, обеспечивающие прохождение электрического тока эта часть системы является ионным проводником электричества (проводник И рода] и называется электролитом. [c.12]

    Этот основной постулат выдвигался многими исследователями и до Аррениуса. Так, Т. Гротгус писал еще в 1818 г. ... расщепление молекул на эле.ментарные частицы, например, как молекул воды, так и молекул растворенной в ней поваренной соли, происходит уже до всякого действия электрического тока. В самой жидкости благодаря находящимся в ней разнородным элементарным частицам... должен действовать постоянный гальванизм . Растворение соли рассматривалось им как способность ее расщепляться на свои полярно-электрические элементарные частицы . [c.34]

    Поскольку прохождение электрического тока через электрохимические системы связано с химическими превращениями, между количеством протекающего электричества и количеством прореагировавших веществ должна существовать определенная зависимость. Она была открыта Фарадеем и получила свое выражение в первых количественных законах электрохимии, названных впоследствии законами Фарадея. [c.278]

    Межионное взаимодействие при неравновесных процессах, в частности ири прохождении электрического тока через растворы электролитов (явление электропроводности), должно иметь иной характер, чем в условиях равновесия. Предложенный Бьеррумом коэффициент электропроводности вносит поправку на силы взаимо- [c.120]

    Работы Дэви по электролизу продолжил его помощник и ученик Майкл Фарадей (1791—1867), который впоследствии стал знаменитым ученым. Ряд электрохимических терминов, введенных Фарадеем, используется и по сей день (рис. 10). Так, например, он назвал расщепление молекул под действием электрического тока электролизом. По предложению специалиста по античной филологии Уильяма Уэвелла (1794—1866) Фарадей назвал соединение [c.67]

    Сначала считалось, что инертные газы могут представлять интерес только как объект научного исследования и никакого практического применения они не найдут. Однако в своих исследованиях, начатых им в 1910 г., французский химик Жорж Клод (1870—1960) показал, что электрический ток, пропускаемый через некоторые газы, подобныь неону, вызывает мягкое окрашенное свечение. [c.107]

    Приблизительно в 1875 г. английский физик Уильям Крукс (1832—1919) сконструировал трубки, в которых можно было получить более глубокий вакуум (трубки Крукса). Исследовать электрический ток, проходящий через вакуум, стало удобнее. Казалось совершенно очевидным, что электрический ток возникает на катоде и движется к аноду, где он ударяется в окружающее анод стекло и создает свечение. Чтобы доказать справедливость такого понимания явления, Крукс помещал в трубку кусок металла, прн этом на стекле на противоположном от катода конце появлялась тень. Однако в то время физики не знали, что представляет собой электрический ток. Они не могли вполне определенно сказать, что же все-таки движется от катода к аподу, правда им доподлинно было известно, что этот поток движется прямолинейно (поскольку тень от металла была четко очерчена). Не придя ни к какому выводу относительно природы этого явления, физики отнесли его к излучению , и в 1876 г. немецкий физик Эуген Гольдштейн (1850—1930) назвал этот поток катодными лучами. [c.147]

    Между прочим, в результате такого перехода электронов и происходит перенос заряда, и поэтому-то химические реакции могут а ужить источником электрического тока, как это показал Вольта более столетия назад (см. гл. 5). [c.159]

    Песочной баней называется металлический сосуд с песком, нагреваемый газовыми горелками или электрическим током. Изменяя толщину слоя песка, легко р тулировать степень нагрева сосудов с растворами. [c.189]

    При прохождении через раствор электрического тока на электродах выделяются продукты электролиза. Эти продукты, присутствуя совместно с ионами, из которых они образовались, представляют собой окислительно-восстановительные пары. Например, пр1т электролизе раствора СиСЬ у катода образуется пара Си +/Си, а анода С12/2С1 . Точно так же при электролизе Си304 у катода [c.426]

    Получение или затрата электрической энергии всегда связаны с прохождением электрического тока, представляющего собой поток электронов, перемещающчхся по одному и тому же пути. Условия протекания химической реакции необходимо поэтому изменить так, чтобы электронные переходы были не беспорядочны, [c.10]

    Первая количественная теория растворов электролитов, т. е. растворов веществ, способных пров13дить электрический ток, была выдвинута Аррениусом в 1883—1887 гг. Дальнейщее развитие эта теория получила в трудах В. Оствальда, П. И. Вальдена, Л. В. Пи-саржевского и др. Она основана hii трех постулатах. [c.34]


Смотреть страницы где упоминается термин Электрический ток: [c.79]    [c.67]    [c.117]    [c.4]    [c.6]    [c.6]    [c.6]    [c.11]    [c.146]    [c.159]    [c.212]   
Смотреть главы в:

Гальванические покрытия  -> Электрический ток

Производство магния электролизом  -> Электрический ток


Учебник общей химии (1981) -- [ c.158 ]

Физическая химия (1978) -- [ c.183 ]

Краткий курс физической химии Изд5 (1978) -- [ c.410 ]

Оборудование химических лабораторий (1978) -- [ c.0 ]

Охрана труда и противопожарная защита в химической промышленности (1982) -- [ c.0 ]

Явления переноса в водных растворах (1976) -- [ c.209 ]

Конструкционные свойства пластмасс (1967) -- [ c.100 , c.101 ]

Очерк общей истории химии (1979) -- [ c.67 , c.72 ]

Меры электробезопасности в химической промышленности (1983) -- [ c.7 ]

Охрана труда в нефтеперерабатывающей и нефтехимической промышленности (1983) -- [ c.0 ]

Конструкционные свойства пластмасс (1967) -- [ c.100 , c.101 ]

Общая технология синтетических каучуков (1952) -- [ c.322 ]

Общая технология синтетических каучуков Издание 2 (1954) -- [ c.305 ]

Ионообменные смолы (1952) -- [ c.89 ]

Основы техники безопасности и противопожарной техники в химической промышленности Издание 2 (1966) -- [ c.0 ]

Краткий справочник химика Издание 4 (1955) -- [ c.0 ]

Основы общей химии Т 1 (1965) -- [ c.203 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.201 ]

Основы общей химии том №1 (1965) -- [ c.203 ]




ПОИСК







© 2025 chem21.info Реклама на сайте