Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионообменные реакции динамика

    Можно показать, что объем десорбирующего раствора в динамическом опыте определяется количеством сорбента и не зависит от степени его отработки. Естественно поэтому, что окончательная степень концентрирования, определяемая концентрацией компонента в десорбционном растворе, обусловлена степенью отработки слоя в динамическом опыте. В этом отношении особенно очевидны преимущества динамического опыта перед статическим при ионообменных процессах, поскольку в динамике степень использования обменной емкости ионита не зависит от концентрации вещества в исходном растворе. Вследствие того, что в динамических условиях продукты ионообменной реакции током раствора выносятся из сферы реакции, равновесие [c.315]


    Динамика ионного обмена описывается системой уравнений статики, кинетики и материального баланса. Однако кинетические модели ионного обмена различны. Процесс может контролироваться внешней или внутренней диффузией, или химической реакцией между ионитом и компонентом раствора. Иногда он зависит от других факторов, например от изменения объема ионита, от диффузионного электрического потенциала, который может возникать, если ионы имеют разные заряды и разные подвижности, и проч. В связи с этим предложено множество кинетических уравнений для разных вариантов механизма процесса. Априорный выбор той или иной кинетической модели, а следовательно, и кинетического уравнения для конкретного ионообменного процесса обычно затруднителен — требуется предварительное экспериментальное исследование. Чаще всего закономерности кинетики ионного обмена в основном тождественны таковым для диффузионных адсорбционных процессов, где массопередача в значительной мере зависит от гидродинамических условий. Вопросы кинетики ионного обмена рассмотрены в монографиях [52, 83а, 107, 145, 180, 181]. [c.309]

    Таким образом, с помощью мессбауэровской спектроскопии можно получить информацию, необходимую для определения структуры химических соединений, выявления тонких деталей химической связи и описывать быстрые реакции. Возможно и чисто аналитическое применение, которое в дальнейшем будет расширяться. Чувствительность метода позволяет даже исследовать динамику атома примеси при концентрации 10- % (ат.), изучать радиационные и другие дефекты в материалах (в том числе на поверхности высокодисперсных систем и в пленках), механизм воздействия ультразвука и радиочастотных колебаний на параметры технологических процессов, диффузию атомов в твердых телах и на их поверхности. Установлено, например, что ионы Ре -ь, локализованы на поверхности силикагеля и цеолита даже после адсорбции воды, в то время как в ионообменной смоле КУ-2 после адсорбции воды ионы Ре + диффундируют в поры смолы, образуя диффузный слой, компенсирующий отрицательный заряд сульфогрупп. По-видимому, большое значение будут иметь методы определения состояния элементов с переменной степенью окисления (табл. 31.8), выявления фаз, включенных в сложные композиции в незначительных количествах, и др. [c.748]

    При этом в связи с чрезвычайной сложностью задачи, обусловленной многообразием факторов, физико-химических и биохимических процессов формирования состава природных вод, в модель введен ряд допущений. Они касаются преимущественно схематизации обменноадсорбционных процессов в системе вода-порода считается, что в ионообменных реакциях участвуют только три гидратированных и поглощенньгх катиона (натрий, кальций, магний), динамика адсорбции считается равновесной и допускается, что ионообменные процессы протекают в условиях полного водонасыщения норового пространства. [c.297]


    Теоретические вопросы динамики ионного обмена разрабатывались советскими учеными на основе представлений о статике и кинетике процесса молекулярной хроматографии, развитых с учетом специфики ионообменных реакций. При этом ставилась задача создания упрощенных методов расчета ионообменных колонн и фильтров. Следует, однако, отметить, что наличие большого числа физико-химических факторов, управляющих процессом, — пабз хание сорбента, специфичность адсорбции ионов и в особенности ионов многовалентных металлов, температура проведения опыта и гидродинамика течения, — еще не позволяет в настоящее время предложить универсальный метод расчета колонн и фильтров, хотя в этом направлении достигнуты известные успехи. В сборник включены работы, отображающие современное состояние теории ионного обмена и ионообменной хроматографии, а также работы, посвященные изучению закономерностей при обмене ионов на ионитах отечественного производства (Е. А. Матерова, В. И. Парамонова, В. А. Клячко, К. В. Чмутов, Т. Б. Гапоп, А. Т. Давыдов, Б. В. Рачинский и др.). [c.3]

    Эритроциты в крови можно по ряду свойств рассматривать так же, как частички гидрофобной эмульсии. На их поверхности адсорбированы молекулы белков, аминокислот и ионы электролитов. Все они сообщают эритроцитам определенный отрицательный заряд, а противоионы создают некоторый диффузный слой. При различных патологических процессах в организме, когда в кровн увеличивается содержание некоторых видов белков (либо особого глюкопротеида, относящегося к а-глобулинам, либо при инфекционных заболеваниях Y-глoбyлинoв), происходит процесс, очень напоминающий ионообменную адсорбцию место ионов электролитов на поверхности эритроцитов занимают белки, заряд которых ниже, чем у суммы замещенных ими ионов. В результате заряд эритроцитов понижается, они быстрее объединяются и оседают (ускоряется реакция оседания эритроцитов — РОЭ). Этот процесс зависит еще от ряда факторов содержания других белковых фракций и мукополисахаридов, концентрации эритроцитов в крови, наличия в крови микробов, наконец, расположения сосуда, в котором наблюдается РОЭ (в частности, скорость ее выше в наклонно расположенном капилляре). Оседание эритроцитов протекает сходно с процессом седиментации гидрофобного коллоида. Как показали исследования при помощи микрокинематографии (Кигезен), к имеющимся в крови агрегатам и монетным столбикам присоединяются отдельные эритроциты укрупнившиеся агрегаты оседают вначале быстро, а потом медленнее, так как в нижних частях капилляров их расположение становится настолько плотным, что частично сохранившиеся у них заряды начинают в большей мере противодействовать сближению частиц. Структура этого осадка напоминает губку чтобы его уплотнить, необходимо выжать оттуда воду, причем чем плотнее осадок, тем труднее это достигается. Поэтому в клинических исследованиях обычно не ожидают завершения оседания эритроцитов, а регистрируют результаты спустя 1—2 ч после начала реакции. Учитывая, что скорость процесса меняется на разных этапах, было предложено изучение его динамики измерением величины оседания эритроцитов каждые 15—30 мин (так называемая фракционная РОЭ). Этот метод представляет значительный интерес и находит широкое применение. [c.167]


Смотреть страницы где упоминается термин Ионообменные реакции динамика: [c.374]    [c.603]    [c.398]    [c.422]    [c.72]   
Ионообменный синтез (1973) -- [ c.38 ]




ПОИСК





Смотрите так же термины и статьи:

Динамика



© 2024 chem21.info Реклама на сайте