Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция воды на ионах

    Очистку сточных вод до санитарных норм этот метод самостоятельно чаще всего не обеспечивает. Наиболее целесообразно совмещать его с адсорбцией и ионным обменом. [c.486]

    В основу физико-химических способов очистки сточных вод положены процессы адсорбции, дистилляции, ионного обмена, электродиализа, осмоса и др. [c.402]

    Поверхность твердого вещества всегда заряжена, хотя часто по совершенно разным причинам благодаря тому, что она образована ионами, входящими в состав твердого вещества, вследствие ориентированной адсорбции дипольных молекул или ионов, или же, наоборот, вследствие, ухода с нее ионов одного знака в окружающую среду (раствор), или, наконец, в результате эмиссии или присоединения электронов под влиянием тех или иных условий, включая все виды воздействий, вызывающих появление статического электричества. Чистая поверхность слюды, например, заряжена положительно, так как она образована ионами К+, а поверхность каолинита, построенная из ионов кислорода или гидроксила — отрицательно. Адсорбция противоположно заряженных ионов может нейтрализовать заряд поверхности или изменить его знак. При адсорбции кислорода на металлах образуется полярная связь М — О, причем кислородная поверхность приобретает отрицательный заряд, а примыкающий слой атомов металла — положительный. Адсорбция воды на металлах вызывает противоположный эффект на поверхности образуется двойной электрический слой, обращенный к окружающей среде слоем не отрицательных, а положительных зарядов. [c.113]


    Специфическая адсорбция газовых ионов на частицах аэрозолей значительно осложняет оценку зарядов частиц. Она характерна для частиц, имеющих химическое сродство к газовым нонам, или для систем, в которых межфазный потенциал возникает еще при их образовании. Электрический потенциал на межфазной границе может возннкнуть прн условии резко выраженного различия полярных свойств среды и дисперсной фазы. Примером могут служить аэрозоли воды илп снега ориентация молекул воды на поверхности частиц по оценке А. И. Фрумкина обусловливает электрический потенциал около 0,25 В и их положительный заряд. Электрический заряд на частицах может возникнуть и в процессе диспергирования (баллоэлектризацин) полярных веществ, когда частицы, отрываясь, захватывают заряд с поверхности макротела. Химическое сродство частиц к нонам и возникший потенциал на межфазной границе приводят к тому, что частицы аэрозоля неодинаково адсорбируют противоположно заряженные ионы, и средний их заряд в системе отличен от нуля. Опытным путем установлено, что частицы аэрозолей металлов и их оксидов обычно приобретают отрицательный заряд, а неметаллы и их оксиды заряжаются, как правило, положительно. [c.228]

    Правило А. В. Думанского (Р/Л й 6050 Дж/моль) применимо лишь для тех веществ, с которыми молекулы воды взаимодействуют с помощью водородных связей (целлюлоза, крахмал, дегидратированный при 110°С палыгорскит). Если основными центрами адсорбции воды являются не гидроксильные группы или атомы кислорода, а обменные катионы (как в случае цеолитов, вермикулита и др.) или координационно ненасыщенные ионы (как в случае палыгорскита, дегидратированного при 180—250°С), то правило А. В. Думанского становится неприменимым [66]. [c.32]

    Для силикатных пород нет точной информации о снижении о под действием воды. Обзор сведений по кварцу содержится в книге [257] и в работе [258], из которых видно, насколько велик разброс литературных данных. Однако можно считать, что свободная энергия негидратированной силоксановой поверхности кварца, обнажающейся при образовании ступеньки, вряд ли успевает сильно снизиться при физической адсорбции воды или при смачивании, а термоактивируемая химическая модификация поверхности с образованием силанольных связей требует большего времени. В то же время известно, что движение дислокаций в кварце может значительно облегчаться под действием воды. По схеме, разработанной Григгсом [259], в результате диффузии воды вдоль дислокаций образуются силанольные мостики =51—ОН. .. НО—51 =, которые легко рвутся в самом слабом месте (по водородной связи). Сопротивление движению дислокаций уменьшается, и поэтому диффузия ОН-групп (или, возможно, ионов Н+ или НзО+) контролирует подвижность дислокаций и, следовательно, скорость деформации. По сути, здесь мы имеем дело с явлением, близким к адсорбционному пластифицированию, только облегчение разрыва межатомных связей происходит в другом координационном окружении — не на поверхности, а в объеме. По-видимому, такой механизм возможен и в случае многих других силикатных минералов (оливин [260] и др.). [c.89]


    Таким образом, с помощью мессбауэровской спектроскопии можно получить информацию, необходимую для определения структуры химических соединений, выявления тонких деталей химической связи и описывать быстрые реакции. Возможно и чисто аналитическое применение, которое в дальнейшем будет расширяться. Чувствительность метода позволяет даже исследовать динамику атома примеси при концентрации 10- % (ат.), изучать радиационные и другие дефекты в материалах (в том числе на поверхности высокодисперсных систем и в пленках), механизм воздействия ультразвука и радиочастотных колебаний на параметры технологических процессов, диффузию атомов в твердых телах и на их поверхности. Установлено, например, что ионы Ре -ь, локализованы на поверхности силикагеля и цеолита даже после адсорбции воды, в то время как в ионообменной смоле КУ-2 после адсорбции воды ионы Ре + диффундируют в поры смолы, образуя диффузный слой, компенсирующий отрицательный заряд сульфогрупп. По-видимому, большое значение будут иметь методы определения состояния элементов с переменной степенью окисления (табл. 31.8), выявления фаз, включенных в сложные композиции в незначительных количествах, и др. [c.748]

    Имеется много патентов [131 на способы разрушения эмульсий Н/В при помощи кислот. Исследования Шеррика, изучавшего адсорбцию водородных ионов, происходящую при добавлении кислот к нефтяным эмульсиям, показали, что для полного деэмульгирования нужна определенная концентрация водородных ионов. Но эффективности действия кислоты можно расположить в следующий ряд НС1 > H2SO4 > GH3 OOH. Он также обнаружил, что при использовании хлорного железа происходит адсорбция ионов, в результате чего эмульсия разделяется на два слоя. В некоторых случаях эмульсии нефти в воде хорошо разрушаются при добавлении солей с двух- и трехвалентными катионами (хлористый кальций, хлористый алюминий). [c.45]

    Таким образом, метод токов ТСД позволяет исследовать процессы ионной релаксации и влияние на эти процессы адсорбированной воды, а также кинетические явления в адсорбенте. Результаты, полученные для оксидов алюминия, показывают, что этот метод применим к изучению процессов в гетерогенных системах при адсорбции воды. [c.266]

    В качестве эмульгаторов могут применяться самые различные по природе вещества поверхностно-активные вещества, молекулы которых содержат ионогенные полярные группы, (мыла в широком смысле слова), неионогенные поверхностно-активные вещества высокомолекулярные соединения. Эмульгирующей способностью-обладают даже порошки. Стабилизация более или менее концентрированных эмульсий с помощью обычных неорганических электролитов невозможна вследствие недостаточной адсорбции их. ионов На межфазной границе неполярный углеводород — вода. [c.373]

    Электризация углеводородного потока со взвешенной нерастворимой фазой недостаточно изучена. Выше было показано, что поток нефти в пласте представляет движение заряженных ионов. Если в этой среде появляется нерастворимая, взвешенная фаза, то заряженные ионы будут адсорбироваться на ней. При прочих равных условиях количество закрепившихся ионов будет тем больше и взвешенные капли воды, пузырьки газа или частицы песка, парафина, окалины железа получат тем больший заряд, чем больше концентрация ионов в потоке. Адсорбция заряженных ионов не может продолжаться беспредельно. Поскольку взвешенная нерастворимая фаза становится заряженной, вокруг капель, пузырьков или частиц создаются электрические поля, которые вначале противодействуют, а затем полностью прекращают дальнейшее закрепление заряженных ионов. Это наступает тогда, когда напряженность поля, созданного зарядом нерастворимой взвешенной фазы, становится равной напряженности пласта в данной его точке. [c.125]

    Адсорбция воды ведет к появлению нового максимума D и изменяет ионные максимумы и С (рис. 16.6). Максимум возрастает приблизительно линейно при увеличении содержания воды до 2—3 молекул на полость. Величина поляризации при этом оказывается примерно пропорциональной количеству адсорбированной воды и пропорциональной напряженности электрического поля. Изменение знака поляризующего напряжения не приводит к изменению положения максимума или связанной с ним величины поляризации. [c.261]

    Примером использования избирательной адсорбции может служить концентрирование микроколичеств катионов металлов, содержащихся в воде (водопроводная вода, вода природных водоемов и т. д.), на активированном угле с последующим определением их содержания. Для этого к достаточно большому объему анализируемой воды (-1 л) прибавляют аммиачный буфер до pH 8—9 и 8-оксихинолин (раствор в ацетоне), который образует относительно прочные оксихинолинатные комплексы с катионами металлов, присутствующих в микроколичествах в анализируемой воде (ионы меди, цинка, кадмия, ртути, алюминия, свинца, хрома, марганца, железа, кобальта, никеля и др.). Затем воду пропускают через активированный уголь, находящийся на фильтре. При фильтровании оксихинолинатные комплексы металлов практически количественно адсорбируются на активированном угле (коэффициент концентрирования равен -Ю ), из которого они могут быть десорбированы обработкой небольшим объемом раствора азотной кислоты НМОз (около 10 мл). В полученном азотнокислом концентрате можно определить содержание указанных металлов различными методами (например, оптическими). [c.236]


    Явление обменной адсорбции играет важную роль в процессах, происходящих в почвах, и также в химической технологии. Так, например, пермутиты и природные цеолиты (водные алюмосиликаты натрия) применяют для очистки воды (умягчения). Они поглощают из воды ионы кальция и магния, отдавая ей эквивалентное количество ионов натрия, и тем самым уменьшают ее жесткость. [c.139]

    Первый шаг в подготовке пробы к анализу состоит в пропускании воды через фильтр с порами 0.45 мкм для отделения часгиц q/спензии Затем фильтрат подкисляют соляной кислотой до pH 2 для предотвращения адсорбции определяемых ионов на сгенках посуды. При этом многие комплексные формы распадаются вследствие диссоциации. Однако в пробах воды практически всегда содержатся органические соединения, которые способны образовывать довольно усто№швые комплексы с ионами металлов и адсорбироваться на поверхности индикаторного электрода, препятствуя процессам электрохимического концентрирования и растворения. Для устранения мешающего влияния органических компонентов применяют облучение гфоб УФ-светом, электрохимическое окисление или кислотное разложение. На рис. 7.3 приведена общая схема пробоподготовки воды при определении в ней токсичных металлов с применением ИВА. Стадии фильтрации и УФ-облучения могут быть пропущены, если вода не содержит в заметных количествах органических компонентов и твердых частиц. [c.279]

    Захваченное вещество находится на поверхности осадка. Это наблюдается в тех случаях, когда соосаждение обусловлено поверхностной адсорбцией. Адсорбированные ионы могут удерживаться очень прочно иногда они не удаляются при промывании водой. Для этого вида соосаждения часто характерна возможность ионного обмена между электролитами, находящимися в растворе, и поглощенными веществами. Путем ионного обмена во многих случаях возможно удаление захваченных примесей. [c.58]

    Объяснение. В данном опыте твердая дисперсная фаза (глина, гипс) лишена подвижности, поэтому перемещаться в электрическом поле может только дисперсионная среда. Поверхность неподвижного остова глины или гипса в воде приобретает отрицательный заряд за счет адсорбции гидроксильных ионов. Эти ионы (а также часть положительных ионов), прочно связанные с поверхностью глинистых частиц, образуют адсорбционный слой. За адсорбционным слоем находятся положительно заряженные ионы диффузного слоя. Так как твердая поверхность по условиям опыта неподвижна, то связанные с ней ионы адсорбционного слоя не могут перемещаться под [c.184]

    Процесс адсорбции мицеллярных ПАВ на границе полярная твердая поверхность — жидкость имеет особенности, отличающие его от адсорбции на границе жидкость — газ. (В случае неполярной поверхности в водном растворе адсорбция ПАВ с ориентацией неполярной цепью к поверхности протекает аналогично адсорбции на границе раздела вода — воздух или вода— масло). Так, для заряженной поверхности в растворе, содержащем поверхностно-активные противоионы, первой стадией адсорбции будет ионный обмен между противоионами поверхности и ПАВ (электростатическое взаимодействие твердое тело — ионы ПАВ), в результате чего поверхность покроется слоем ионов ПАВ, ориентированных полярной группой к твердой, неполярной — к жидкой фазе. В дальнейшем с ростом концентрации ПАВ происходит мицеллообразование на поверхности ТЖ (например, бислойных мицелл, где углеводородные цепи будут ориентированы внутрь мицеллы, а полярные головки — в сторону раствора). Такому механизму адсорбции соответствует двухступенчатая изотерма, в которой первое плато соответствует в первом приближении ИЭТ (нейтрализация зарядов поверхностных групп), а второе —ККМ. [c.360]

    На платине эффект дискретности отсутствует. Это связано с тем, что имеется очень сильное взаимодействие между ионами (например, анионами С1 , Вг и др.) и поверхностью электрода, в результате чего центры ионов приближаются к поверхности. С другой стороны, эффект дискретности не проявляется при специфической адсорбции анионов СЮг и N0, на ртутном электроде, так как эти ионы отделены от поверхности ртути прослойкой из молекул воды. Специфическая адсорбция этих ионов в основном обусловлена эффектом выжимания . [c.121]

    Обмен ионами между фазами — не единственная причина возникновения двойного электрического слоя и скачка потенциалов на границе раздела фаз. Двойной электрический слой может образоваться в результате преимущественной адсорбции одного знака. Ионы противоположного знака притягиваются к поверхности электростатическими силами. Интересно, что двойной электрический слой адсорбционного происхождения может возникать на границе жидкость — воздух. Обстоятельное изучение этого явления провел А. Н. Фрумкин. Он установил анионы чаще адсорбируются на границе вода — воздух, чем катионы повышение гидратации ионов снижает их адсорбционную способность при адсорбции органических ионов выполняется правило Дюкло — Траубе. [c.82]

    Эффект высаливания состоит в увеличении коэффициента активности органического вещества ya за счет связывания молекул воды ионами электролита. Поскольку этот коэффициент активности был включен нами в константу адсорбционного равновесия [см. уравнения (2.33), (2.69) и (2.70)], tq с ростом сэ следует ожидать увеличения Во- Таким образом, при A = onst эффект высаливания должен приводить к расширению области адсорбции, а при (p = onst к тому, что определенные значения 6 будут достигаться при меньших концентрациях органического вещества Сд. [c.77]

    К электрофорезу близок по своей природе электроосмос. Сущность его заключается в происходящем под действием постоянного электрического тока перемещении жидкости, заключенной в капиллярах или порах твердого тела. Причиной этого явления может быть контактная электризация жидкости, собственная электролитическая диссоциация вещества поверхности или неодинаковая адсорбция ею ионов разного знака, в результате чего жидкость приобретает заряд. Направление перемещения определяется знаком этого заряда и зависит как от состава жидкости, так и от материала твердого тела. -Например, вода при контакте со стеклом заряжается положительно и поэтому перемещается к катоду. Электроосмос находит практическое использование в некоторых областях техники. Например, с его помощью может быть значительно ускорен процесс дубления кож. [c.616]

    При энергичном взбалтывании смесей, состоящих из воды и масла, компонент, содержащийся в меньшем количестве, дробится на мельчайшие капельки, распределяющиеся по всему объему. Образуется эмульсия, в которой капельки жидкости (дисперсная фаза) по свойствам очень сходны с частицами гидрофобного коллоида Главным фактором их устойчивости также является заряд, возни кающий либо за счет адсорбции некоторых ионов, либо за счет дис социации ионогенных групп, которые могут содержаться в различ ных веществах, адсорбированных капельками эмульсии из раствора Таким образом, капельки эмульсии имеют некоторый -потенциал [c.164]

    I случай. Скачок потенциала возникает за счет выхода ионов из металла, опущенного в раствор электролита, или адсорбции его ионов из раствора на металле. В случае активных металлов (2п, Ре, Сс1) более вероятен процесс отрыва от поверхности металла положительных ионов, которые взаимодействуют с полярными молекулами воды и в гидратированном состоянии переходят в раствор. Вследствие этого поверхность металла заряжается отрицательно, а слой раствора, примыкающий к ней, — положительно. По мере увеличения концентрации катионов у поверхности в растворе вероятность выхода ионов из металла уменьшается, а вероятность входа их в металл (адсорбция) из раствора увеличивается. Если скорости этих процессов сравниваются, то установится динамическое равновесие на границе металл — раствор. [c.192]

    Расчеты рекомендуется производить на соотношение металлов. Получаемые осадки (чаще всего гидроокиси или карбонаты) следует промывать до исчезновения в промывных водах ионов ОН (с фенолфталеином) или N03 (с дифениламином). Даже после самой тщательной громывки катализаторы содержат некоторое количество адсорбированной щелочи (до 1%), которое обычно не влияет отрицательно на активность катализатора, а во многих случаях действует даже активирующе. При недостаточных промывках катализаторы получаются со сниженной активностью и быстрее утомляются. Присутствие избыточной щелочи влияет конденсирующим образом, вследствие чего на поверхности образуются пленки из нелетучих продуктов конденсации, затрудняющие адсорбцию. Поэтому, за исключением специальных случаев, необходима тщательная промывка осажденных гелей. [c.51]

    Адсорбция воды приводит также к изменению токов ТСД в области ионных максимумов. Как видно из рис. 16.6, максимум В уменьшается с ростом гидратации, а максимум С растет. Такая зависимость может быть объяснена тем, что с увеличением содержания воды увеличивается электропроводность цеолита [697] и ионы, разморозившиеся первыми, экранируют ионы, еще остающиеся замороженными в области В. Другая причина уменьшения максимума с ростом гидратации может заключаться в шунтирующем действии образца, когда его сопротивление становится соизмеримым с сопротивлением электрометра. Эти причины являются более вероятными, чем сделанное первоначально [698] предположение о выключении из процесса В релаксаторов в результате их взаимодо.йствия с водой. [c.262]

    Объяснение. Каолиновая глина преимущественно состоит из минерала каолинита [АЬ81205(0Н)4]. Этот минерал имеет двухслойную кристаллическую решетку, пакеты которой образованы из двух связанных через общие атомы кислорода слоев слоя кремнекислородных тетраэдров и алюмогидроксильного слоя, имеющего диокта-эдрическое строение. Такие двухслойные пакеты чередуются в кристалле с промежутками, придавая ему пластинчатое строение. В неразрушенном кристалле все валентные связи уравновешены. Однако в местах разрыва каолинитовых кристаллов валентные связи оказываются ненасыщенными и здесь в водном растворе будут адсорбироваться гидроксильные ионы воды, сообщая поверхности каолинитовых частиц отрицательный заряд. Процесс адсорбции гидроксильных ионов еще более усиливается в щелочной среде. В электрическом поле постоянного тока отрицательно заряженные частицы каолинита движутся к аноду и осаждаются на нем в виде плотного слоя. Подобным образом в практике производят очистку некоторых веществ от примесей каолинита или других подобных ему минералов. [c.183]

    Рассмотрим вопрос о заряде коллоидных частиц, от которого в существенной мере зависит их агрегативная устойчивость. Возникновение этого заряда частиц связано с избирательной адсорбцией ионов из раствора. В ряде случаев частицы могут приобретать заряд за счет собственной ионизации. Так, например, вольфрамовая и оловянная кислоты, кислые красители отщепляют в воде ионы водорода, а остающиеся на поверхности анионы составляют отрицательную обкладку у двойного слоя. Однако количество зарядов и их плотность не определяют непосредственно устойчивость коллоидных систем. Коллоидные частицы находятся в непрерывном движении. Это создает условия, порождающие возникновение электрокинетическо-го потенциала. [c.410]

    Отсюда следует, что увеличение коэффициента ионного распределения и уменьшение величины адсорбции органического иона из неводных сред будут при обмене на двухвалентный ион еще больше, чем при обмене минеральных ионов. Экспериментальные исследования показывают, что при одинаковой степени заполнения емкости коэффициент распределения при обмене морфина на кальций возрастает при переходе от воды к метиловому спирту почти в 1000 раз, в то время как константа ионного обмена ионов цезия на ионы кальция только в 10 раз (рис. 93). Зависимость Ig от 1/е в этом случае уже не линейна, так как ЛС/п не зависит от диэлектрической проницаемости. Величина (АС7пм пн о) в уравнении не остается постоянной с изменением степени заполнения адсорбционного объема органическими ионами адсорбционные потенциалы различно изменяются с изменением емкости, поэтому влияние растворителя на коэффициент распределения зависит от степени заполнения емкости адсорбента органическими ионами. Если с изменением степени заполнения С/пм становится сравнимой с или больше нее, то будет происходить изменение знака (i7i,r — /пл)- В этом случае константа с увеличением степени заполнения емкости органическим ионом будет не возрастать, а падать. [c.375]

    Зависимость адсорбции на ионных адсорбентах от электрических моментов молекул. Кристаллические непористые и тонкопористые ионные адсорбенты, катионированные цеолиты. Влияние на адсорбцию цеолитами полярности молекул, радиуса и заряда катионов, степени ионного обмена, декатионирования и деалюминирова-ния. Межмолекулярные взаимодействия адсорбат — адсорбат в полостях цеолита и влияние температуры на состояние адсорбированного вещества. Особенности адсорбции воды. Применение цеолитов в хроматографии. [c.28]

    Эритроциты в крови можно по ряду свойств рассматривать так же, как частички гидрофобной эмульсии. На их поверхности адсорбированы молекулы белков, аминокислот и ионы электролитов. Все они сообщают эритроцитам определенный отрицательный заряд, а противоионы создают некоторый диффузный слой. При различных патологических процессах в организме, когда в кровн увеличивается содержание некоторых видов белков (либо особого глюкопротеида, относящегося к а-глобулинам, либо при инфекционных заболеваниях Y-глoбyлинoв), происходит процесс, очень напоминающий ионообменную адсорбцию место ионов электролитов на поверхности эритроцитов занимают белки, заряд которых ниже, чем у суммы замещенных ими ионов. В результате заряд эритроцитов понижается, они быстрее объединяются и оседают (ускоряется реакция оседания эритроцитов — РОЭ). Этот процесс зависит еще от ряда факторов содержания других белковых фракций и мукополисахаридов, концентрации эритроцитов в крови, наличия в крови микробов, наконец, расположения сосуда, в котором наблюдается РОЭ (в частности, скорость ее выше в наклонно расположенном капилляре). Оседание эритроцитов протекает сходно с процессом седиментации гидрофобного коллоида. Как показали исследования при помощи микрокинематографии (Кигезен), к имеющимся в крови агрегатам и монетным столбикам присоединяются отдельные эритроциты укрупнившиеся агрегаты оседают вначале быстро, а потом медленнее, так как в нижних частях капилляров их расположение становится настолько плотным, что частично сохранившиеся у них заряды начинают в большей мере противодействовать сближению частиц. Структура этого осадка напоминает губку чтобы его уплотнить, необходимо выжать оттуда воду, причем чем плотнее осадок, тем труднее это достигается. Поэтому в клинических исследованиях обычно не ожидают завершения оседания эритроцитов, а регистрируют результаты спустя 1—2 ч после начала реакции. Учитывая, что скорость процесса меняется на разных этапах, было предложено изучение его динамики измерением величины оседания эритроцитов каждые 15—30 мин (так называемая фракционная РОЭ). Этот метод представляет значительный интерес и находит широкое применение. [c.167]

    Выполнение работы. Поместить в пробирку 5—7 капель раствора сульфата тетраа.мминмеди. В раствор всыпать измельченный силикагель. Закрыть пробирку пальцем и, энергично встряхивая, перемешать раствор. Наблюдать окрашивание силикагеля и ослабление окраски раствора вследствие адсорбции силикагелем ионов [Си(Г 1Нз)4 1 . Дать раствору отстояться, слить его с силикагеля или удалить пипеткой. Силикагель промыть 2—3 раза дистиллированной водой. Добавить 5—10 капель хлороводородной кислоты. Наблюдать обесцвечивание силикагеля вследствие разрушения окрашенных ионов хлороводородной кислотой по уравнению [c.169]

    Таким образом, зависимость термодинамических величин q и Ст от л и рассмотренные ИК спектры указывают на начальную фиксацию кислорода молекулы воды на катионах и связывание с ионами кислорода решетки цеолита одного водорода этой молекулы (высокая теплота адсорбции, низкая теплоемкость и узкая полоса валентных колебаний другой свободной группы ОН молекулы воды). Затем идет фиксация молекул воды между катионами К" , что обуславливается располол<ением, концентрацией и гидрофобным характером этих больш-их катионов (см. рис. 2.9). Когда эти возможности исчерпаны, теплота адсорбции падает, а теплоемкость возрастает в соответствии с разрывом при нагревании водородных связей в некоторой части образованных при адсорбции воды ассоциатов. Дальнейший рост q и падение Ст обусловлены, в основном, образованием водородно-связанной сетки ассоциатов воды, фиксированной на поверхностях полостей этого цеолита. Когда образование этих ассоциатов завершено, q снова падает, а Ст растет. Наконец, перестройка сетки ассоциатов при заполнении центральных частей полостей цеолита ведет снова к росту q (уже небольшому) и падению Ст до величины, довольно близкой к теплоемкости жидкой воды. Изменения в инфракрасном спектре при адсорбции воды цеолитом KNaX подтверждают, что с ростом происходит поочередное усиление и ослабление водородной связи. Для цеолита NaX этого не наблюдается. [c.44]

    Для небольших по размерам молекул воды, обладающих значительным электрическим моментом диполя и способностью к образованию водородных связей, зависимость q от весьма сложна. Для разных цеолитов и разных их катионных форм эти зависимости неодинаковы. На рис. 2.14 они представлены для цеолита типа X со щелочными катионами. В случае цеолита LiNaX с наибольшим содержанием ионов лития начальная теплота адсорбции воды весьма велика (gi i90 кДж/моль), однако с ростом [c.41]

    На рис. 2.17 представлены зависимости q от /г для адсорбции воды цеолитами KNaX и KNaY. В этих, цеолитах содержится, соответственно, 80 и 57 катионов на /з элементарной ячейки цеолита. Кривая для наиболее богатого ионами К+ образца (80 К+) [c.44]

    Механизм хроматографического разделения на целлюлозе, по-видимому, не является чисто экстракционным. В целлюлозных колонках заметно проявляются процессы адсорбции и ионного обмена, которые влияют на хроматографическое поведение ионов. В некоторых случаях эти свойства искусственно усиливаются (кипячением с HNO3), чтобы улучшить разделение. Целлюлоза очень сильно взаимодействует с водой. При этом наиболее прочно связанная часть воды образует фазу, обладающую другими свойствами, чем остальная вода, находящаяся на целлюлозе [98]. Поэтому при малом содержании воды в колонке могут наблюдаться отклонения от распределительного механизма. Для удержания достаточных количеств водной фазы целлюлозу нужно промыть водным раствором, удаляя затем его избыток органическим растворителем. [c.151]

    Выдглгние адсорбцией и ионным обменом. Эти методы очень перспективны, особенно для извлечения германия из бедного сырья (рудничные воды, воды обогатительных фабрик, воды от тушения кокса и т. п.). Германий сорбируется из растворов активированным углем (например, марки БАУ). Лучше всего адсорбция происходит из нейтральных растворов. Для десорбции рекомендуется 1 %-ный раствор ЫаОН [82.  [c.183]


Смотреть страницы где упоминается термин Адсорбция воды на ионах: [c.45]    [c.64]    [c.65]    [c.206]    [c.249]    [c.207]    [c.339]    [c.327]   
Явления переноса в водных растворах (1976) -- [ c.521 , c.535 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция ионитах,

Адсорбция ионная

Адсорбция ионов

Ионы в воде



© 2024 chem21.info Реклама на сайте