Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки разделение в виде солей

    Коацервация. Своеобразной формой явной коагуляции в растворах белков, совершающейся также под действием солей и сопровождающейся, как и высаливание, разделением фаз, является процесс, получивший название коацервации От высаливания коацервация отличается тем, что вещество дисперсной фазы не отделяется от растворителя в виде твердообразных [c.224]

    Если наблюдаемый материал слишком толст для того, чтобы через него могли проходить электроны, необходимо получить из него тонкий срез. Для этого материал должен быть достаточно жестким. Жесткость достигается с помощью процесса, называемого заливкой, который заключается в постепенном замещении воды в образце органическим мономером (например, метилмет-акрилатом), который при полимеризации дает твердый материал. После затвердевания считается, что полимерный блок содержит неразрушенный образец, который затем разрезают с помощью ультрамикротома на слои толщиной от 500 до 1000 А. Эти срезы затем окрашивают (иногда окрашивание проводят перед заливкой), выдерживая их в растворах солей молибдена, вольфрама, свинца или урана, либо в парах тетраокиси осмия. (Термином окрашивание обозначается процесс введения атомов тяжелого металла с помощью химической реакции или в результате образования комплексов с некоторыми компонентами образца для увеличения электронной плотности.) Таким способом атомы тяжелых металлов вводятся в белки, а также в другие макромолекулы и агрегаты, создавая тем самым в образце участки с высокой электронной плотностью. Окрашенные препараты дают прекрасные картины (рис. 3-4) со множеством важных деталей, которые интерпретируются по распределению атомов металлов, т. е. по функциональным группам, с которыми способен реагировать конкретный окрашивающий агент. Следует иметь в виду, что при этом могут возникнуть артефакты. Например, при включении осмия с обратной стороны толстой мембраны на изображении получаются две черные линии, разделенные неокрашенным пространством, что может привести к ошибочному заключению [c.67]


    Исследование аминокислотного состава белков. Определение аминокислотного состава белков обычными химическими методами, их разделение в виде солей, сложных эфиров и других соединений—одна из самых трудоемких и сложных работ. Применение хроматографического анализа позволяет значительно облегчить и упростить определение аминокислотного состава белков. [c.41]

    Этот метод заключается в постепенном осаждении белков на колонке с инертным носителем и последующем элюировании отдельных фракций подходящим элюентом. Отдельные белки существенно различаются по растворимости, которая может варьировать в широких пределах в зависимости от концентрации солей, детергентов и органических растворителей. Метод разделения, основанный на постепенном элюировании белков подходящим элюентом, в сущности является антиподом дробного осаждения, также применяющегося для разделения белков. В отличие от эксперимента в статических условиях элюирование в колонке дает более высокое разрешение, поскольку в плавном градиенте удается создать оптимальную концентрацию, достаточную для элюирования и в то же время препятствующую закупорке колонки осадком белка. Кайл с сотр. [68] разработали метод разделения, основанный на различной растворимости белков в растворах сульфата аммония, получивший название колоночная градиентная экстракция белков. Вначале белки переводят в осадок в виде слоев (или зон) на кизельгуре (Hyflo Super el) с возрастающей концентрацией сульфата аммония. Затем носитель с зоной выпавшего в осадок белка переносят в колонку и промывают все более разбавленными растворами сульфата аммония. По мере снижения концентрации соли белки постепенно растворяются и вымываются из колонки. Эффективность метода была продемонстрирована на ряде примеров. На рис. 35.4 приводится разделение белков сыворотки лошади. [c.451]

    Препараты, получаемые из опийных алкалоидов. Алкалоиды опия содержатся в млечном соке снотворного мака в виде солей, образованных различными кислотами, и извлекаются из опия водной экстракцией. Экстракт освобождают по возможности от содержащихся в нем балластных примесей (смолы, белки, углеводы), после чего из него выделяют шесть главных алкалоидов. Разделение этих алкалоидов основано на различной растворимости их оснований и солей в воде и в органических растворителях (например, в дихлорэтане). [c.249]


    Обычно считают нецелесообразным повторять фракционирование сульфатом аммония в одинаковых условиях несколько раз подряд. Но если варьировать температуру или pH, то порядок, в котором будут осаждаться различные белки, может измениться. В таком случае целесообразно проводить фракционирование последовательно, при разных условиях. Иногда для разделения системы используют различные соли последовательно или в виде смеси. Так, известен метод, в котором обезжиренную муку земляного ореха экстрагировали 10%-ным хлористым натрием при рН = —6,0, а затем из осветленного экстракта белки фракционировали с помощью сульфата аммония. Чтобы выделять отдельные ферменты, солевое разделение можно использовать и само по себе, и в комбинации с иными способами, с воздействиями, основанными на иных принципах. Сочетаются, например, высаливание, адсорбционные способы и электрофорез, спиртовое разделение фракций и затем их солевая очистка, дробное высаливание и электрофорез и т. п. [c.148]

    Б гель-хроматографии групповым разделением называют такой процесс, в ходе которого высокомолекулярные соединения хорошо отделяются в виде одной группы от другой группы — низкомолекулярных соединений, более тонкое разделение внутри обеих этих групп при этом не требуется. Высокомолекулярные соединения, например белки, нуклеиновые кислоты и т. д., выходят из колонки со свободным объемом элюента (Kav равно или близко нулю), а низкомолекулярные соединения прочнее удерживаются (их Kav близко к единице). Если низкомолекулярные соединения представляют собой неорганические соли или другие диссоциирующие продукты, то процесс называется высаливанием. Высаливанием часто неправильно называют разделение таких низкомолекулярных соединений, которые не являются солями, например мочевины, сахаров идр. [c.381]

    Поэтому до настоящего времени не нашли широкого распространения в области полисахаридов такие виды хроматографии, как распределительная и адсорбционная (отдельные примеры см." ). Более успешным оказалось применение ионообменной хроматографии для разделения кислых и даже нейтральных полисахаридов. Ионообменниками служат обы.ч,но аниониты, полученные модификацией целлюлозы, например ДЭАЭ-целлюлоза. Для элюирования полисахаридов с колонок используют растворы солей или буферные растворы разной концентрации прочно удерживаемые полисахариды элюируют разбавленными растворами щелочей. Таким споссбом легко удается отделить кислые полисахариды от нейтральных, например, пектиновую кислоту от сопутствующего ара-бинана или сульфированные полисахариды водорослей от крахмалоподобных примесей в ряде случаев при таком способе разделения удается освободиться от примесей белка. Нейтральные полисахариды можно разделить, применив ДЭ.ЛЭ-целлюлозу в боратной форме, при вымывании боратным буфером . Описано также успешное применение ЭКТЕОЛА- [c.486]

    Таким образом, варьируя pH буфера и концентрацию соли, можно подобрать условия для разделения всех белков смеси в одном хроматографическом опыте. Если сделать это не удается, то неразде-лившиеся белки можно внести в колонку с другим ионообменником или использовать другой вид хроматографии. [c.267]

    После разъединения полипептидных цепей белка удается выделить отдельные цепи в чистом виде, что сложнее сделать в случае длинных полипептидных цепей [306], чем коротких цепей, для выделения которых в чистом виде можно применять различные методы, например хроматографию на бумаге [320] и на колонке [219, 277], противоточное распределение [331] и ионофорез [10, 266]. В окисленном инсулине, в котором обе цепи сильно различаются по кислотности из-за неодинакового аминокислотного состава, разделение цепей удается осуществить фракционированием солей [263], ионофо-эезом [143, 263], распределительным хроматографированием 6] или противоточным распределением [190, 240]. Окисленный химотрипсин, содержащий три пептидные цепи, дает три фракции с характерными свойствами, позволяющими разделять их. комбинацией метода осаждения при pH 6 и ионообменного хроматографирования створимого вещества. [c.177]

    Белки в пробе можно коагулировать, например нагреванием. Липиды, воски, парафины и другие липофильные соединения удается отделить от гидрофильных компонентов методом экстракционного разделения между фазами петролейного эфира и водных спиртов (например, 60- и 95%-ного метанола в зависимости от природы веществ) в одной делительной воронке или в нескольких, применяя метод противоточного распределения. Различные виды аминокислот (основные, кислые и нейтральные) можно предварительно разделить посредством электрофореза на бумаге или в геле. Для отделения различных органических кислот и ряда соединений типа фенолов от сахароподобных веществ пригодны даже такие старые методы, как осаждение ацетатом свинца, основным ацетатом свинца и т. п. Некоторые группы алкалоидов можно высадить из экстрактов с помощью специфических реагентов, а затем выделить их. В тех случаях, когда представляют интерес органические вещества средней полярности, можно иногда очистить пробу непосредственно на бумаге, на которой должен проводиться хроматографический анализ. Неочищенную пробу хроматографируют сначала чистым петролейным эфиром (иногда несколько раз), липиды при этом перемещаются вместе с фронтом растворителя. Далее хроматограмму сущат, после этого можно хроматографировать пробу еще раз чистой водой, если целевое вещество полностью нерастворимо в ней. Вода вымывает из пробы соли, сахара, аминокислоты и т. д., которые перемещаются вместе с фронтом элюента или вблизи него. В заключение пробу хроматографируют специально подобранным элюентом, следя при этом, чтобы фронт растворителя не продвинулся на такое же расстояние, как при предыдущих операциях по очистке. [c.88]


    Применение сушки методом сублимации дало возможность получить продукт весьма высокого качества. Начало этому методу положили биология и медицина [237], [250], так как для них было особенно важно сохранить жизнеспособность микроорганизмов, что никаким другим способом сушки сделать не удавалось. Например, при сушке веществ,, содержащих сложные белковые -соединения, может происходить необратимая агрегация белковых молекул. Она имеет место под воздействием концентрированных растворов солей, образующихся в материале по мере уменьшения его влажности. После такой агрегации белковых молекул, так называемой денатурации, растворимость их резко понижается. Если же сушка производится методом сублимации, то сетка льда исчезает из замороженного белкового раствора, оста-вляя молекулы белка, и солей разделенными в сухом молекулярном скелете, образующем губчатую массу, объем которой равен объему первоначально замороженной массы [70]. Вследствие этого готовый продукт чрезвычайнолегко растворяется. Так, например, раствор желатины, приготовленный в горячей воде, после сушки легко растворяется холодной водой. Полученный после сушки и расфасовки сухой продукт может храниться длительное время (по данным ИЭМ им. Гамалея, сыворотка, высушенная в ампулах, хранилась в течение 14 лет без заметной потери титра). Выпускаемые в жидком виде в ампулах лечебно-профилактические антитоксические сыворотки — противодифтерийные, противостолбнячные и т. п. — могут храниться в течение 1,5—2 лет. Если учесть большой масштаб производства сывороток для создания запаса, то становятся очевидны.ми преимущества применения процесса сушки. В ряде технологических процессов производства медицинских и биологических препаратов такой процесс является единственно возможным методом сушки и позволяет получать высококачественный сухой продукт. Большие 280 [c.280]

    Первый вопрос, который возникает каков суммарный аминокислотный состав данного белка Техника определения этого состава со времени Э. Фишера ушла далеко вперед по точности (достигающей 99%) и по скорости операции. После кислотного или щелочного гидролиза (кислотный гидролиз разрушает триптофан и приходится комбинировать оба способа расщепления) раствор смеси аминокислот при pH 2 пропускают черев ионообменник (сульфированный полистирол в виде натриевой соли), который связывает все аминокислоты за счет их аммонийной функции, и аатем постепенно элюируют кислыми буферными растворами с pH, увеличивающимися от 3,5 до 5,5 и затем до И, т. е. все менее кислыми. Акинокислоты вымываются в порядке уменьшающейся кислотности под конец, при буфере pH 11, идет вымывание диаминокислот. В настоящее время все операции разделения производятся на автоматических аналива-торах, в которых смена буферных растворов совершается автоматически, а количество выделенных аминокислот определяется фотометрически по интенсивности сине-фиолетовой окраски, возникающей при реакции с нингидрином, который образует со всеми аминокислотами один и тот же краситель в результате следующих реакций  [c.696]

    В современных методиках выделения ДНК (обзоры — см. ) основной стадией является обычно экстракция биологического материала фенолом 9. При этом ДНК после разделения слоев переходит в водный слой или остается в виде осадка в интерфазе, а большая часть белка денатурирует и переходит в фенольный слой. Для удаления белка из препаратов ДНК используют также обработку детергентами смесью хлороформ — изоамиловый (или октиловый) спирт а также инкубацию с протеолитическими ферментами, например с проназой РНК отделяют от ДНК фракционным осаждением спиртом и обработкой препарата рибонуклеа-зами. Большая часть полисахаридов обычно удаляется при фракционном осаждении этанолом или изопропанолом в некоторых случаях приходится применять дополнительную очистку (экстракция метилцеллозольвом, фракционирование цетавлоновых солей, электрофорез). [c.29]

    Эти смолы и соответствующие им амберлиты ША-400 и Ш-120 употребляются чаще в виде смесей в целях обессоливания белковых растворов, чем для истинных хроматографических операций [35, 36]. В тонкоизмельченном виде эти смолы иногда дают хорошее хроматографическое разделение, однако они обладают одним серьезным недостатком — низкой емкостью. Боман [37] систематически исследовал смолу дауэкс 2 (200—400 меш), имеющую 8—10% поперечных связей, и выяснил ряд интересных фактов. Перед использованием смолу промывают 1 н. раствором НС1. После насыщения смолы буфером при pH 7,3 на ней адсорбируют белки сыворотки при низкой ионной силе (0,02—0,04 М) и элюируют путем ступенчатого повышения молярпости буферного раствора. При использовании катионного буфера трис-НаХ pH регулируется лучше, чем при использовании анионного буфера, например ацетатного. Емкость дауэкс 2 при pH 7,3 для сывороточного альбумина составляет 0,5 лгг/лгуг смолы, поэтому для разделения следует использовать колонку, близкую к пределу насыщения. Как и при работе с фосфатом кальция, индивидуальный блок может элюироваться в виде нескольких небольших пиков, соответствующих разности между теми количествами белка, которые насыщают смолу при данных концентрациях солей. Боман нашел, что порядок элюирования белков сыворотки с дауэкс 2 отличается не только от порядка распределения их при электрофорезе, но также отданных, полученных при разделении на [c.232]

    Отстаивание воды проводят в непрерывно действуюш,их отстойных бетонированных резервуарах. Для достижения полного осветления и обесцвечивания декантируемую из отстойников воду подвергают коагуляции. Коагуляция - высокоэффективный процесс разделения гетерогенных систем, в частности выделения из воды коллоидно-дисперсных частиц глины, кварцевого песка, карбонатных и других пород, а также веществ органического происхождения, например белков. Для инициирования процесса коагуляции в обрабатываемую воду вводят коагулянты - обычно различные электролиты. Ион-коагулянт, имеющий заряд, противоположный заряду коллоидной частицы, адсорбируется на ее поверхности. При этом нейтрализуется заряд частицы и сжимаются сольватные (гидратные) оболочки вокруг коллоидных частиц, которые могут объединяться друг с другом и седиментиро-вать. Минимальная концентрация электролита, вызывающая за Определенный промежуток времени явную коагуляцию, называется порогом коагуляции. Чем выше заряд иона-коагулянта, тем меньше порог коагуляции. Так, природные глинистые коллоидно-дисперсные системы имеют отрицательный заряд и для их коагуляции используют соединения алюминия в виде сульфата или двойных солей - квасцов. Одновременно с коагуляцией происходит адсорбция коагулятом (осадком) различных органических красящих веществ, в результате чего вода обесцвечивается. [c.33]

    Анализ биологических жидкостей, клеточных экстрактов и других сложных материалов с помощью ГЖХ может оказаться невозможным из-за присутствия высокополярных и высокореактивных компонентов или ряда мешающих примесей. Кроме того, такие неочищенные пробы могут преждевременно загрязнять жидкую фазу. Поэтому обычно проводят предварительное разделение анализируемой смеси для удаления из нее микроорганизмов, компонентов культуральной среды, белков, смол, солей и т. д. Иногда перегнанные или проэкстра-гированные пробы можно вводить прямо в колонку. При этом, однако, следует иметь в виду, что данный метод неприменим к водным пробам. В некоторых случаях требуется высушивание, гидролиз или количественная химическая обработка проб для получения летучих производных. Эти процедуры часто являются причинами дополнительных ошибок. [c.209]

    Regnier, 1983). Во многих случаях приемлемыми системами для элюции оказались градиентные растворы ацетонитрила, содержащие ион-парный агент ТФК в концентрации 0,1%. ТФК является сильной кислотой и помимо этого обладает целым рядом преимуществ 1) хорошо солю билизирует белки 2) относительно слабо поглощает в УФ-области 3) доступна в очищенном виде 4) легко удаляется при лиофилизации. Ацетонитрил обладает теми же достоинствами в отношении поглощения, чистоты и летучести и, кроме того, имеет очень низкую вязкость. При разделении белков используются также такие растворители, как 1- и 2-пропанол, несмотря на их более высокую, чем у ацетонитрила, вязкость. Они обладают большей гид-рофобностью, и поэтому в их присутствии белки можно элюировать при меньших концентрациях органических растворителей. [c.123]

    Первые исследования белков проводились со сложными белковыми смесями, такими, как яичный белок, сыворотка крови, экстракты из растительных и живот ных тканей, а подчас и цельные ткани. Лишь в конце XIX в. получили распространение методы разделения белков с помош ью осаждения нейтральными солями. В 30-е годы XX в. были получены первые белки в кристаллическом состоянии. Получение веш ества в кристаллическом виде служит одним из надежных доказательств чистоты (гомогенности) препарата. В частности, в 1926 г. Д. Самнер выделил из семян канавалии белок (фермент) уреазу в кристаллическом состоянии Д. Нортроп и М. Кунитц в 1930-1931 гг. получили кристаллы пепсина и трипсина. После этих пионерских работ выделение индивидуальных белков стало частым событием в истории биохимии, особенно после 50-х годов, когда начали применять современные методы фракционирования — хроматографию на гидрофильных ионообменниках, гель-фильтрацию ( молекулярное просеивание ), новые методы электрофореза и др. [c.17]


Смотреть страницы где упоминается термин Белки разделение в виде солей: [c.396]    [c.20]    [c.352]    [c.576]    [c.92]    [c.489]    [c.50]    [c.396]    [c.92]    [c.489]    [c.498]    [c.361]    [c.166]   
Методы органической химии Том 2 Издание 2 (1967) -- [ c.706 ]

Методы органической химии Том 2 Методы анализа Издание 4 (1963) -- [ c.706 ]




ПОИСК





Смотрите так же термины и статьи:

Белки разделение



© 2025 chem21.info Реклама на сайте