Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тефлон идентификация

    Перспективы применения атомно-эмиссионных детекторов в газовой хроматографии обсуждаются в работах Удена [И, 109, 114]. Все модификации АЭД обладают высокой специфичностью и применяются для идентификации элементов в ЛОС и неорганических газах. Аргоновый плазменный детектор [115] применяют при прямом определении агрессивных неорганических соединений (НС1, I2, O I2, N02H др. газы). Хроматограф из стекла и тефлона с АЭД фиксирует хлор при его содержании на уровне 0,1 ррт. Еще [c.449]


    Особенно эффективными являются спектроэлектрохимические методы с оптически прозрачными электродами и методы спектроскопии отражения [21]. В последнем случае используют оптически прозрачные плоскопараллельные электроды, между гранями которых луч света (видимой или инфракрасной области спектра) способен многократно отражаться. Если использовать несколько плоскопараллельных электродов, то сигнал, измеряемый спектрофотометром, будет значительно усиливаться. Эти методы, а также спектроскопия ЭПР наиболее продуктивны при изучении интермедиатов, обладающих достаточной растворимостью в анализируемой системе. Однако иногда промежуточные продукты и другие компоненты электрохимической реакции адсорбируются на поверхности электрода. Для изучения таких продуктов применяют масс-спектрометрию. При этом торец микропористого гидро-фобированного тефлоном электрода используется как стенка ячейки, связанной с масс-спектрометром [21]. Низкомолекулярные легколетучие продукты, образовавшиеся в ходе электрохимического процесса на поверхности электрода, в высоком вакууме масс-спектрометра покидают электрод и фиксируются детектором. Соединив электрохимическую ячейку с масс-спектрометром, можно провести идентификацию продуктов и установить зависимость их возникновения от потенциала электрода. Кроме того, можно определить зависимость измеряемого сигнала М е (при постоянном потенциале, М — молекулярная масса) от времени электролиза. [c.13]

    В отфильтрованных от Ni прогидрированных растворах параллельно с исходными растворами анализировали качественное и количественное содержание примесей методом газожидкостной хроматографии, основанным на идентификации компонентов по относительным удерживающим объемам Определение ЦГН и ЦГЛ проводили на хроматографе Цвет-1 с катарометром с использованием 10% ПЭГ 1500 на тефлоне, лри длине колонки 2 м, температуре 110°С и ско рости 1 одачи гелия 3,6 л ч, а определение ЦГО и АН —на хроматографе Вирус с катарометром с использованием 30% ПМФС-4 на хромосорбе W, при длине трубки 4 лг, температуре 190°С и скорости подачи гелия 3,6 л/ч. [c.55]

    Одним из наиболее интересных аспектов использования ЭПР в химии является возможность изучения кинетики реакций свободных радикалов в конденсированной фазе и определения 1 онстант скоростей элементарных реакций. К 1957—1958 гг. метод ЭПР стал уже распространенным методом идентификации и изучения строения свободных радикалов в жидкой и твердой фазах, однако он практически не использовался для проведения количественных кинетических экспериментов. В это время по инициативе В. В. Воеводского было поставлено исследование скорости диссоциации гексафенилэтана на трифенилметиль-ные радикалы [1] и проведен цикл исследований реакций свободных радикалов в облученном политетрафторэтилене (тефлоне). Результаты этих пионерских исследований публикуются в настоящей главе. Смысл этих работ заключается не только в количественном определении ряда элементарных констант скоростей реакций фтор алкильного радикала, теплоты распада перекисного радикала, коэффициента диффузии кислорода и т. д., но главным образом в демонстрации возможностей применения ЭПР для количественных кинетических измерений и в разработке методики анализа экспериментальных данных. Публикуемые здесь первые работы по изучению кинетики радикальных реакций в твердой фазе стимулировали дальнейшие иоследования учеников и сотрудников В. В. Воеводского, в которых были изучены специальные классы радикальных реакций [2, 3], построена кинетическая теория радикальных реакций в твердой фазе [4], начато прямое исследование клеточного эффекта [5] и проблемы пространственного распределения радикалов в твердых матрицах [6, 7]. Несомненно, что эти работы оказали также немалое влияние и на другие многочисленные исследования элементарных реакций в конденсированной фазе, выполненные или ведущиеся в Советском Союзе и за рубежом. В результате определения констант скоростей реакций рекомбинации фторалкильных и перекисных радикалов в публикуемых здесь работах В. В. Воеводского был поставлен принципальный вопрос о природе компенсационного эффекта (КЭФ), т. е. о причинах наблюдения аномально больших энергий активаций Е и предэкспоненциальных множителей ко, связанных между собой зависимостью типа ко=А+ВЕ. В. В. Воеводским было высказано предположение, что КЭФ наблюдается в результате того, что зависимость к от температуры не является аррениусовской Е падает с ростом температуры), но это отклонение не может быть замечено в обычных экспериментах. Позднее учениками В. В. Воеводского были прове- [c.250]


    Эллис и сотр. [23] исследовали автомобильные выхлопные газы. Они анализировали, методом ИК-спектроскопии компоненты, выходящие из хроматографической колонки при разделении окисленных фракций, и идентифицировали альдегиды, кетоны и спирты. Выхлопные газы пропускали через 1%-ныи раствор NaHSOa. При этом кислородсодержащие соединения поглощались, а углеводородная фракция проходила. Воду отделяли от органических соединений на препаративной хроматографической колонке. Органические компоненты улавливали с помощью узкой металлической трубки, охлаждаемой жидким азотом. Процесс концентрирования проводили несколько раз, чтобы получить суммарную пробу, которую можно было бы проанализировать на аналитической хроматографической колонке. Разделение проводили на колонке размером 600X0,6 см, наполненной порошком тефлона с 9% карбовакса. В качестве детектора использовали катарометр. Для отбора фракций из колонки применяли мешки из поливинил фторида. Отобранные газовые пробы вводили в кюветы ИК-спектрометра для газового анализа с длиной пробега луча 10 м. Авторам удалось идентифицировать аЦетон, ацетальдегид, метилэтилкетон, метанол и этанол. Для анализа приходилось пропускать через раствор очень большие (в среднем по 100 л) пробы выхлопных газов. Хотя этот метод не использовали для анализа атмосферного воздуха, на его примере можно видеть, какие методы обычно применяют для идентификации микропримесей в пробах воздуха. По-видимому, ценность количественных данных, полученных таким методом, невысока из-за вероятности неполного извлечения примесей при пропускании газовых проб через водный раствор при комнатной температуре. [c.112]

    Политетрафторэтилен. ПТФЭ, или тефлон, исследовали в твердом состоянии с целью идентификации радикалов, получаемых при механическом разрушении [15, 406, 407, 658, 728, 1071, 1205], и оценки его поведения при трении и истирании [659, [c.265]


Смотреть страницы где упоминается термин Тефлон идентификация: [c.213]    [c.54]   
Химические волокна (1961) -- [ c.560 ]




ПОИСК





Смотрите так же термины и статьи:

Тефлон



© 2025 chem21.info Реклама на сайте