Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость реакции молекулярность элементарной реакци

    Сумма показателей степеней в кинетических уравнениях называется общим (суммарным) порядком реакции. Таким образом, порядок реакции определяет характер зависимости скорости от концентрации реагентов. Для элементарных реакций молекулярность и порядок реакции совпадают. Если процесс многостадиен и поэтому запись уравнения реакции лишь фиксирует исходное и конечное состояние системы, не раскрывая механизма процесса, а также в тех случаях, когда по условиям эксперимента различие концентрации реагентов весьма велико, порядок реакции не совпадает с ее молекулярностью. Примеры такого несовпадения можно показать на следующих процессах  [c.233]


    Скорость химической реакции А + + В О + Е будет определяться числом столкновений возбужденных молекул А и В, суммарная энергия которых должна быть выше энергии Е, необходимой для образования переходного состояния. Однако это условие является необходимым, но не достаточным. Для образования переходного состояния кроме избыточной энергии сталкивающихся молекул необходимо благоприятное расположение атомов в реакционных центрах реагирующих молекул. Следовательно, теория элементарного химического акта должна давать возможность расчета высоты энергетического барьера и вероятности образования переходного состояния исходя из строения и свойств реагирующих молекул. Одним из первых направлений в развитии теории элементарных реакций является теория активных столкновений. Ее основы разрабатывались на базе молекулярно-кинетических представлений и идеи, выдвинутой Аррениусом об активных столкновениях, заканчивающихся химическим актом. На современном этапе это направление развивается на базе квантовой теории химической связи и строения молекул. Начало этому было положено работами Эйринга, Эванса, Поляни и др., создавших новое направление в теории элементарных химических реакций, так называемую теорию абсолютных скоростей реакций. В этой теории ставится задача расчета высоты энергетического барьера и вероятности образования переходного состояния исходя из свойств реагирующих молекул. За последние три десятилетия получило развитие новое направление в теории элементарных химических реакций, в котором строение и свойства переходного состояния описываются на базе теории молекулярных орбиталей. [c.562]

    На первый взгляд, проблема элементарного химического акта в мономолекулярной реакции может показаться более простой, чем в бимолекулярной реакции. В действительности это далеко не так. Трудность проблемы заключается в том, что большинство мономолекулярных реакций являются сложными реакциями, протекающими через ряд параллельных и последовательных стадий. В настоящее время общепринятой схемой описания мономолекулярной реакции является схема, предложенная Линдеманом (1922). Рассмотрим особенности мономолекулярной химической реакции типа Ai -> Аа, протекающей в газовой фазе при постоянном объеме. Не вдаваясь в подробности молекулярного механизма процессов активации, дезактивации и химического акта, выразим скорости отдельных стадий и всего процесса с помощью метода формальной кинетики. Скорость п процесса активации молекул Ai можно выразить как сумму скоростей бимолекулярных реакций [c.588]


    Реакции можно классифицировать 1) по числу частиц, принимающих участие в элементарном акте — по молекулярности реакции под эту классификацию попадают только элементарные, простые по механизму реакции, протекающие в о д н у с т а д и ю 2) по виду кинетического уравнения для скорости реакции — по порядку реакции эта классификация не делает различия между простыми и сложными, т. е. многостадийными реакциями. [c.229]

    Большинство химических реакций протекает в несколько стадий. Даже если скорость реакции описывается простым кинетическим уравнением, реакция может состоять из ряда стадий. Одной из задач кинетики является определение промежуточных стадий, потому что только таким путем можно понять, как протекает реакция. Отдельные стадии называются элементарными реакциями. Совокупность элементарных реакций представляет механизм суммарной реакции. При рассмотрении механизма говорят о молекулярности стадий, которая определяется числом реагирующих молекул, участвующих в элементарной реакции. Отдельные стадии механизма называются мономолекулярными, бимолекулярными или тримолекулярными в зависимости от того, одна, две или три молекулы вступают в реакцию на данной стадии. Для элементарных реакций молекулярность (моно-, би- и три-) совпадает с их порядком (соответственно первый, второй и третий), но по отношению к суммарной реакции эти термины не являются синонимами. Например, мономолекулярная стадия механизма имеет первый порядок, но реакция первого порядка не обязательно долл<на быть мономолекулярной, как будет показано ниже (разд. 10.12). [c.292]

    Другим примером, относящимся к этому, является участие катализатора в каталитической реакции. Катализатор— это соединение, которое определенным образом влияет на скорость реакции, но при этом не расходуется его можно рассматривать как вещество, являющееся одновременно и реагентом и продуктом реакции. Концентрация катализатора остается постоянной в ходе реакции, и кинетический анализ одного опыта не дает возможности судить о его участии в реакции. То, что катализатор участвует в реакции, можно показать, измеряя скорость реакции при различных его концентрациях в общем случае наблюдается линейная зависимость. Из уже сказанного должно быть ясно, что для заключения о молекулярности элементарной реакции следует провести не только тщательное кинетическое изучение, при котором следует изменять всевозможные факторы, но также рассмотреть и другие стороны реакции, включая точное знание природы продуктов реакции. 3  [c.51]

    Отличительной особенностью радиационно-химических реакций является слабая зависимость их скорости от температуры. Это обусловлено главным образом отсутствием энергетического барьера у ионно-молекулярных реакций и относительно небольшим энергетическим барьером у атомно-молекулярных. Элементарная реакция окисления азота (4.1), однако, отличается от других ионно-молекуляр-ных реакций тем, что имеет небольшой энергетический барьер — около 7 ккал/моль [3]. Это отчасти обусловливает температурную зависимость скорости реакции окисления азота. [c.97]

    Таким образом, порядок реакции характеризует формально-кинетическую зависимость скорости реакции от концентрации реагирующих веществ, а молекулярность — элементарный механизм отдельных стадий сложного процесса. Эти понятия совпадают только для простых по механизму реакций. [c.18]

    Порядок реакции является чисто эмпирической величиной. Только для элементарной реакции, протекающей в один этап, он равен ее молекулярности, так как стехиометрическое уравнение правильно отражает истинный механизм такой реакции. Различают полный и частный порядок реакции. Каждый из показателей степени при концентрациях в дифференциальном уравнении скорости выражает частный порядок. Сумма показателей степени при концентрациях определяет полный (суммарный) порядок реакции. [c.321]

    Сегрегация и ее воздействие на химические превращения и процессы переноса особенно проявляются в системах с повышенной вязкостью, а также там, где реакции протекают с высокими скоростями. Образование молекулярных агрегатов характерно для многих процессов получения высокомолекулярных соединений. Так, сложной совокупностью физико-химических явлений отличается гетерофазная полимеризация, при которой образующийся полимер выделяется из первоначально гомогенной системы в виде новой конденсированной фазы с соответствующими морфологическими особенностями и возможным протеканием элементарных реакций в нескольких фазах [12, 13]. Примером может служить полимеризация винилхлорида, которая протекает в три стадии вначале процесс идет в гомогенной мономерной фазе на второй (наиболее продолжительной) стадии полимеризация протекает в двух фазах — мономерной и полимер-мономерной, а на третьей стадии — вновь в одной фазе (полимер-мономерной). При этом процесс сопровождается потоками массы и тепла в глобулярных образованиях (полимерных частицах), размеры которых увеличиваются в ходе реакции за счет поступления реагентов из сплошной мономерной фазы. [c.26]


    Для элементарных реакций, т. е. реакций, протекающих в одну стадию, уравнение, выражающее зависимость скорости реакции от концентрации реагентов, вытекает из стехиометрического уравнения реакции, так как порядок реакции равен ее молекулярности . Так, для элементарных реакций  [c.9]

    Наконец, третья задача — определение констант скорости элементарных реакций на основе молекулярных данных. Этот вопрос обсуждается в теоретическом аспекте в 2—4 настоящей главы. [c.17]

    Начало систематических исследований скорости химических превращений положено работами Н. А. Меншуткина в конце 70-х годов XIX в. Е 80-х годах Я. Вант-Гофф и С. Аррениус сформулировали основные законы, управляющие протеканием простых химических реакций, и дали трактовку этих законов, исходя из молекулярно-кинетической теории. Дальнейшее развитие этих работ привело к созданию в 30-х годах XX в. Г. Эйрингом и М. Поляни на базе квантовой механики и статистической физики теории абсолютных скоростей реакций, открывающей перспективы расчета скоростей простых (элементарных) реакций, исходя из свойств реагирующих частиц. [c.3]

    Таким образом, порядок реакции следует рассматривать лишь в связи с механизмом реакции в целом, помня, что этот механизм складывается из отдельных элементарных стадий. В ТО время как порядок реакции определяется для реакции в целом, понятие молекулярность реакции относится к ее отдельным стадиям. Молекулярность реакции равна числу молекул, которые сталкиваются в элементарном акте химического превращения (на некоторой промежуточной стадии процесса). Оче- Видно, что чаще всего происходят двойные столкновения (двух частиц) между реагирующими молекулами, а следовательно, в большинстве случаев элементарные стадии (или элементарные реакции) бимолекулярны. Вероятность тройных соударений (соответствующая тримолекулярным реакциям) уже значительно меньше, а реакции с молекулярностью более трех практически не наблюдаются. Настоящие мономолекулярные реакции, в которых молекулы распадаются сами без какого-либо внешнего воздействия, также встречаются очень редко. Наиболее известный пример мономолекулярного процесса, протекающего по первому порядку, — это радиоактивный распад. Он происходит спонтанно, и на него практически не оказывают влияния внешние воздействия. Скорость распада в любой момент времени t пропорциональна числу имеющихся атомов Ы  [c.152]

    В качестве иллюстрации отличия порядка реакции от молекулярности рассмотрим вопрос о том, какой порядок может иметь мономолекулярная реакция. Элементарным актом многих моно-молекулярных реакций является распад молекулы, например диссоциация перекиси третичного бутила в паровой фазе. Прежде чем распасться, молекула исходного вещества должна приобрести избыток энергии в результате столкновений с другими молекулами. Эго означает, что реакция идет в две стадии первая — образование активных молекул и вторая — их разложение. Если достаточная часть избыточной энергии сосредоточивается на одной связи внутри молекулы, то происходит распад молекулы. В зависимости от соотношения скоростей этих стадий суммарная реакция может иметь и второй порядок. [c.321]

    Влияние условий полимеризации на молекулярную массу и ММР в первую очередь связано с зависимостью этих молекулярных параметров от констант скоростей элементарных реакций — инициирования, роста и ограничейия растущих цепей. [c.54]

    Однако понятие порядка реакции не всегда отражает молекулярный механизм реакции. Это связано с тем, что не во всех случаях сразу после столкновения молекул происходит элементарный акт химического превращения. Часто при столкновениях сначала образуются промежуточные вещества, которые только несколько позже превращаются в продукты реакции. В таких случаях скорость реакции непосредственно не определяется частотой соударений частиц. Например, скорость превращения [c.129]

    B заключение параграфа отметим, что кинетическое уравнение вида (10.2) не имеет универсального характера, не всегда скорость реакции есть степенная функция концентрации, иными словами, не всегда существует порядок реакции. Последний имеет физический смысл молекулярности лишь для элементарных реакций. Во всех остальных случаях это эмпирический параметр, пока- [c.206]

    Очевидно, что чем выше скорость роста цепи по сравнению со скоростью ее обрыва, тем больше длина реакционной цепи и тем больше молекулярная масса полимера. Таким образом, длина реакционной цепи (а следовательно, и молекулярная масса полимера) зависит от соотношения скоростей элементарных реакций процесса цепной полимеризации. [c.63]

    Для случая элементарной реакции можно теоретически рассчитать величину скорости этой реакции и показать идентичность величин порядка и молекулярности. [c.128]

    Если реакция протекает в одну стадию, то порядок равен молекулярности если реакция протекает в несколько стадий, то порядок определяется скоростью медленного элементарного процесса и отражает молекулярность этого процесса. [c.130]

    Константы скорости ионно-молекулярных реакций с переходом тяжелых частиц, как правило, весьма велики и достигают (прн комнатной темн-ре) значений 10 см /сек, т. е. приблизительно на порядок больше, чем у самЫх быстрых реакций между нейтральными частицами. Это связано с тем, что большое число ионно-молекулярных реакций протекает без энергии активации, а также с тем, что образование промежуточного комплекса в таких реакциях происходит под действием силы притяжения между И. и поляризованной им молекулой. Такая сила является, как правило, значительно более дальнодействующей, чем силы взаимодействия между нейтральными частицами. Константа скорости ионно-молекулярно11 элементарной реакции с переходом тяжелой частицы, не имеющей энергии активации, практически не зависит от темп-ры в весьма широком диапазоне значений последней. [c.159]

    Полпдисперсность полимеров может быть количественно описана с помощью функции распределения по молекулярным массам, т. е. зависимости относительного числа или весовой доли макромолекул с данной молекулярной массой дю(М) от величины А1. Функция распределения макромолекул по молекулярным массам определяется соотношением скоростей элементарных реакций процесса полимеризации (инициирования, роста, обрыва цепей) и особенностями зависимости этих скоростей от длины цепи и условий процесса. [c.21]

    Два основных фактора определяют весьма существенную, общую для сложных радиационно-химических реакций последовательность типов элементарных п-роцессов относительно малая скорость генерации активных частиц при типичных. значепиях мощности дозы и высокие константы скорости ионно-молекулярных реакций. [c.195]

    Молекулярность реакции. Наблюдаемая на опыте скорость химической реакции является совокупностью множества протекающих за единицу времени элементарных химических актов. Элементарным химическим актом называется единичный акт взаимодействия частиц (молекул, радикалов, ионов, атомов и др.), в результате которого образуются новые частицы продуктов реакции или промежуточных соединений. Число молекул, участвующих в элементарном химическом акте, называется молекулярностью реакции. Молекулярность реакции всегда целое положительное число 1, 2, реже 3. Элементарных химических актов с одновременным участием четырех молекул не бывает, так как вероятность одновременного столкнове- [c.527]

    Скорость элементарной реакции равна произведению концентраций реагентов, участвующих в химическом акп1е, возведенных в степени, равные стехиометрическим коэффициентам реакции. Уравнение (195.1) является основным законом кинетики. Коэффициенты v могут принимать только целые положительные значения, равные 1, 2, 3. Закон действующих масс был впервые сформулирован Гульдбергом и Вааге (1867). Пфаундлер уравнение (195.1) теоретически вывел на базе молекулярно-кинетической теории (1867). Часто односторонние реакции могут протекать через стадии образования промежуточных соединений реагирующих молекул с молекулами растворителя или катализатора, с последующим превращением в продукты реакции. Тогда уравнение скорости химической реакции записывают в форме [c.533]

    Мономолекулярные реакции. Согласно теории Рис. 190. Предпола- переходного состояния уравнение (212.22) оп-гаемая пространст- ределяет константу скорости любой элементар-Геход Го ной реакции. Для мономолекулярной реакции в элементарной би- (см. 76) K.N = КТ = Кр, произведение молекулярной реак- произведение IIQgp можно принять равным ции На + I2 единице, так как моменты инерции реагирую- [c.580]

    Молекулярность реакции — это число молекул, участвующих в элементарном акте реакции, определяющей скорость процесса. Известны MOHO-, би- и тримолекулярная реакции. Естественно, что молекулярность относится лишь к элементарной реакции и выражается только целым числом. [c.31]

    Большой научный интерес представляют исследования инициированного крекинга, то есть термического распада алканов при температурах, когда сам по себе распад не происходит (практически скорость распада равна нулю) но его вызывают небольшие примеси инициаторов—соединейия, легко распадающиеся на радикалы при низких температурах. Эта форма крекинга возможна лишь в той мере, в кйкой распад имеет радикально-цепной характер. При пониженных температурах крекинг не происходит вследствие очень малой скорости реакции первичного распада алкана на радикалы. Вместе с тем понижение температуры более благоприятно для развития цепей. Поскольку остановка процесса при низких температурах связана с практически ничтожной скоростью реакции зарождения радикалов, то, вводя в зону крекинга небольшие количества соединений, легко распадающихся на радикалы, необходимые для развития термического распада, мы можем повысить до нужных значений концентрацию радикалов и ускорить крекинг принципиально до значений скорости, соответствующих обычным температурам крекинга. Однако понижение температуры всегда приводит к понижению скорости элементарных реакций, которые происходят с заметной скоростью лишь при высоких температурах. Это в первую очередь относится к тем реакциям развития цепей при крекинге, которые связаны с распадом тех или иных сложных радикалов. Скорость распада таких радикалов уменьшается с понижением температуры и, естественно, по- нижается и скорость цепного крекинга в целом. Таким образом, индуцирование термического крекинга алканов при помощи инициаторов в условиях, при которых aw по себе распад не происходит, непосредственно доказывает радикально-цепной механизм крекинга, поскольку не представляется возможным рассматривать индуцированный крекинг как одну из форм молекулярного (или гетерогенно-гомогенного) катализа. [c.62]

    Созданная Эйрингом, Эвансом, Поляни и Вигнером теория абсолютных скоростей реакций почти 40 лет является, по существу, единственной теорией, позволяющей на основе молекулярных данных анализировать кинетику и механизм разнообразных элементарных реакций. В основу теории заложены квантсвомеха-нические, статистические и термодинамические представления, поэтому она является весьма плодотворной при решении многих кинетических задач, возникающих в физике, химии и биологии [21, 26—341. [c.20]

    Весьма нестрогое определение, под которым, как правило, понимают такое химическое превращение, когда для перехода реагентов в продукты необходимо преодолеть только одно переходное состояние. Элементарная реакция может быть моно-, би- и значительно реже тримолекулярной. При этом порядок и молекулярность совпадают. Элементарная реакщи характеризуется соответствующей элементарной константой скорости реакщ1и. Отсюда следует химическая реакция, которая включает две и более элементарные реакции, является многостадийной химической реакцией. В этом случае реагенты от продуктов отделены двумя и более переходными состояниями. [c.266]

    Порядок реакции по данному реагенту (частный порядок) равен показателю степени, в которой концентрация реагента входит в кинетическое уравнение для скорости реакции. Например, в реакции, скорость которой V = ЛСд , порядок реакции по реагенту А равен Па. Для простой реакции порядок по данному реагенту равен числу частиц реагента, участвующих в одном элементарном акте, и совпадает с молекулярностью реакции. Так, для реакции 2 NO + 2NO I [c.25]

    Число молекул, вступающих в элементарный акт (отдельная ступень) химической реакции, происходящей за одно столкновение реагирующих молекул, называется молекулярностью реакции. Поэтому молекулярность реакции не может быть не-целочис ленной. Известны мономолекулярные, бимолекулярные и, как редкое исключение, тримолекулярные реакции. Порядок же реакции, будучи результатом взаимоналожения кинетических закономерностей (и молекулярностей) отдельных ее стадий, может быть и нецелочисленным и не совпадать ни с суммой стехиометрических коэффициентов химического уравнения реакций, ни с молекулярностью отдельных ее элементарных стадий. Порядок реакции отраясает суммарную кинетическую зависимость скорости всей многостадийной реакции от концентрации реагирующих веществ, а молекулярность — механизм элементарных стадий сложного процесса. Поэтому порядок и молекулярность совпадают лишь для простых по механизму реакций. [c.237]

    Часто различают молекулярность и порядок реакции. Моле-кулярность — это число молекул (частиц), принимающих участие в элементарном акте химического взаимодействия. Если превращение испытывает одна молекула, то это мономолекулярная реакция,. две — бимолекулярная, три — тримолекулярная. Порядок и молекулярность совпадают только для элементарных реакций. В случае сложных реакций различные элементарные стадии накладываются друг на друга, давая сложную концентрационную зависимость скорости. [c.204]


Смотреть страницы где упоминается термин Скорость реакции молекулярность элементарной реакци: [c.220]    [c.328]    [c.87]    [c.568]    [c.10]    [c.328]    [c.568]    [c.260]    [c.215]    [c.118]    [c.183]   
Аналитическая химия Том 2 (2004) -- [ c.321 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярность реакции

Реакции элементарные

Скорость реакции элементарная реакция



© 2025 chem21.info Реклама на сайте