Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектроскопия поглощения также Поглощение

    Для анализа нефтяных компонентов применяют УФ-спектроскопию. Поглощение энергии в УФ-области обусловлено изменениями энергетического состояния внешних электронов. Такое поглощение связано с переходом валентных а- и я-электронов со связывающих орбиталей на разрыхляющие, а также с переходами электронов неподеленных пар гетероатомов (я-электронов) типа п- к и и —> а . В молекулах насыщенных угле- [c.81]


    В основе всех спектроскопических методов лежит измерение зависимости интенсивности поглощения, испускания или рассеяния света веществом от частоты света (или длины волны). В оптической спектроскопии используются спектры поглощения в инфракрасной, видимой или ультрафиолетовой областях в, интервале длин волн от 10 1 до 10 см , а также спектры комбинационного рассеяния света и спектры люминесценции (менее важный и общий метод спектров люминесценции здесь не рассматривается). На рис. 70 приведена классификация спектров в зависимости от длины волны (или частоты). Разделение оптического спектра на эти участки связано с возможностями приборов, а также с природой поглощения света в разных областях. Для химиков-органиков наибольшее [c.607]

    Следует иметь в виду, что в отгоне, кроме карбонильных соединений, собираются примеси углеводороды, а также сернистые и азотистые соединения. Поэтому в такой смеси кетонов содержится всего 30%. Тем не менее отгон исследовали при помощи ИК-спектроскопии. Сильная полоса поглощения в области 1700 см (толщина слоя 0,02 мм), характерная для группы>С=О указывала на присутствие кетонов (рис. 36). [c.245]

    Одним из наиболее эффективных методов исследования можно считать оптическую спектроскопию. При прохождении света (УФ, видимого или ИК, т. е. электромагнитных волн с определенной энергией) через раствор органического вещества происходит его частичное или полное поглощение (это зависит от энергии светового пучка и от строения органического вещества). Другими словами, оптическая спектроскопия исследует зависимость интенсивности поглощения света от длины волны (энергии). Поглощенная молекулой энергия может вызвать или переход электрона с одного энергетического уровня на другой, энергия которого выше (УФ-спектро-скопия), или привести к колебанию и вращению атомов (ИК-спек-троскопия). Поскольку спектры поглощения в УФ и видимой областях связаны с электронными переходами, то эти спектры называются также электронными спектрами. В общем спектре электромагнитных волн они находятся в интервале от 200 до 1000 нм.  [c.33]

    Улучшение чувствительности ЯМР-спектрометров. ЯМР-спектроскопия отличается невысокой чувствительностью. Главная причина этого состоит в небольшой разности заселенностей ядерных энергетических уровней и, как следствие, легкости достижения состояния насыщения (равная заселенность уровней). В этом состоянии поглощение ядрами энергии извне прекращается и спектр записать невозможно. Во избежание насыщения образец облучают очень слабым источником электромагнитного излучения (его мощность составляет, как правило, не более нескольких милливатт). Доля поглощенного излучения не превышает 10 мощности генератора, т. е. составляет 10 —10 Вт. Чтобы зарегистрировать такой слабый сигнал, его нужно многократно усилить. При этом неизбежно в систему усилителя просачиваются посторонние сигналы (шум), которые также подвергаются усилению и создают фон. Если магнитных ядер мало или их сигнал слабый, то резонансный пик может потонуть в шуме и мы его не заметим. [c.46]


    К сожалению, эта принятая в молекулярной спектроскопии система обозначений противоположна системе, принятой в атомной спектроскопии. Кроме того, некоторые авторы, работающие в области микроволновой спектроскопии, а также электронной спектроскопии больших молекул, не следуют принятому правилу и записывают первым символом исходное состояние, т. е. нижнее состояние в поглощении и верхнее состояние в испускании. В настоящей книге мы всегда будем придерживаться рекомендации Международной комиссии по спектроскопии. [c.52]

    Импульсную кинетическую спектроскопию можно также использовать для изучения важнейших процессов в фотохимических системах, например триплет-триплетного поглощения, гибели триплетного возбужденного состояния (Т ) и т. п. [c.281]

    Инфракрасная спектроскопия дает возможность надежно устанавливать идентичность соединений по совпадению полос поглощения по всей области ИК спектра (400—4000 СМ ) ИК спектроскопия используется также для определения отдельных структурных элементов, имеющих характеристические полосы поглощения Это группы, содержащие водород и группы с кратными связями. [c.233]

    В электронной спектроскопии интенсивность полос поглощения измеряется обычно значением молярного коэффициента поглощения в максимуме полосы (емакс или 1 емакс). Полосы поглощения могут быть охарактеризованы также и интегральной интенсивностью А [c.62]

    Колебательная спектроскопия включает также метод комбинационного рассеяния. Спектроскопия комбинационного рассеяния основана на явлении неупругого рассеяния света. Энергия рассеиваемого света отличается от энергии падающего света на величину, соответствующую энергии колебательного возбуждения. Взаимодействие между светом и колеблющейся молекулой зависит от ее поляризуемости. Соответствующий оператор, по которому определяется правило отбора, представляет собой оператор квадрупольного момента, включающий квадраты координат. Уравнение (4.25) определяет гейзенберговскую матрицу для (Х . Эта матрица имеет ненулевые элементы на диагонали и на расстоянии двух элементов от нее. На первый взгляд может показаться, что Ап должно быть равно 2, однако исследование матричных элементов показывает, что они зависят только от ненулевых элементов матрицы О. Поэтому правило отбора в спектроскопии комбинационного рассеяния, выраженное через Ап, в приближении гармонического осциллятора должно было бы совпадать с правилом отбора в спектроскопии инфракрасного поглощения. Однако в дальнейшем мы убедимся, что существуют налагаемые симметрией правила отбора, которые неодинаковы для инфракрасной спектроскопии и спектроскопии комбинационного рассеяния. [c.86]

    В многоканальных приборах (см. табл. 11.2) спектр /(Я) можно получить фурье-преобразованием регистрируемой интерферограммы. Преимущества фурье-спектрометров перед классическими дисперсионными щелевыми заключается в большей светосиле и возможности одновременного измерения всех компонент спектра. Фурье-спектрометры наиболее эффективны для исследования протяженных спектров слабых поглощений в ИК-области, в ИК оптико-акустической спектроскопии, а также для решения задач сверхвысокого разрешения (ЯМР-спектроскопия). [c.222]

    Гипсохромный сдвиг — в УФ-спектроскопии — смещение полос поглощения в коротковолновую область. Например, присоединение протона к анилину (Х = 280 нм) вызывает смещение полосы поглощения в более дальнюю УФ-область (Х гидрохлорида анилина равна 254 нм). См. также Батохромный сдвиг. [c.80]

    В настоящее время для установления строения органических соединений наиболее широко применяют спектроскопию ЯМР, ИК- и электронную спектроскопию поглощения (ЭСП), а также масс-спектрометрию, основанную на превращениях молекулы под действием электронного удара. [c.515]

    Нетрудно сообразить, что соответствующий спектр будет состоять из одной линии поглощения или ряда таких линий, если у системы имеется несколько возбужденных состояний (Ч ех , Ч Ех2 и т. д.). Реальные спектры поглощения молекул по разным причинам состоят не из отдельных линий, а из полос. Каждому электронному состоянию молекулы соответствует ряд колебательных состояний, а колебательным состояниям — ряды вращательных состояний (рис. 13.5). Поэтому полосы поглощения, отвечающие электронным возбуждениям, обладают колебательной структурой, колебательные полосы имеют вращательную структуру, а вращательные полосы — еще и квадрупольную структуру. Разумеется, соотнощение (13.6) также однозначно определяет частоту излучения, которое испускает молекула при переходе из состояния Ех в состояние О, если этот переход сопровождается испусканием излучения. Возбужденное состояние может отдать энергию каким-либо другим способом в спектроскопии растворов чаще всего осуществляется столкновение возбужденных молекул с молекулами растворителя в этом случае происходит безызлучательная дезактивация. [c.346]


    С помощью ультрафиолетовой спектроскопии можно также определять некоторые неорганические вещества, но для этого типа анализов-более широко используется поглощение излучения в видимой области. [c.142]

    Порфирины обладают характерными спектрами поглощения поэтому спектроскопия оказы-вается чрезвычайно полезной при идентификации как отдельных порфиринов, так и всего класса в целом. Стандартный спектр порфиринов этио-типа приведен на фиг. 178. Это спектр уропорфирина в щелочном водном растворе. ЗаТисключением положения максимумов поглощения и некоторых небольших различий в относительной высоте пиков, спектры копропор- фирина и протопорфирина в щелочном или в нейтральном растворе, а также в эфире имеют в общем такую же форму. Положение максимумов поглощения отчасти может зависеть от природы заместителей. Нанример, в эфире максимумы поглощения протопорфирина по сравнению с максимумами копропорфирина сдвинуты примерно на 8 ммк в сторону более длинных волн каждая винильная группа дает сдвиг на 4 ммк. Введение боковых цепей определенного типа оказывает поразительное действие также на относительную высоту пиков. Однако число полос поглощения в нейтральном или щелочном растворе постоянно. [c.439]

    Можно сделать некоторые замечания о сравнительных характеристиках абсорбционной и люминесцентной спектроскопии, а также спектроскопии КР. Хотя люминесцентные исследования обычно более чувствительны, чем абсорбционные, они ограничены кругом веществ, которые имеют возбужденное состояние, достаточно долгоживущее для спонтанного испускания с Л-фак-тором не более 10 с и способное эффективно конкурировать с предиссоциацией или другими безызлучательными процессами релаксации, которые экспериментатор не волен контролировать (но см. разд. 7.6). Более того, время жизни люминесценции накладывает ограничение на самую длинную временную шкалу в экспериментах с временным разрешением (около 10 с). Взаимодействие электромагнитного излучения с веществом при поглощении или комбинационном рассеянии происходит примерно в течение одного периода волны, или около с в УФ-области. Поэтому промежуточные соединения реакции могут исследоваться с фемтосекундным временным [c.197]

    За последние годы стало все более очевидным, что ультрафиолетовая спектроскопия представляет также ценный метод изучения конформационных превращений в белках, нуклеиновых кислотах и их синтетических аналогах. Ультрафиолетовый спектр белков возникает главным образом за счет фенольных групп тирозина и индольных групп трипто-ф)аиовых остатков. Намного меньший вклад вносит фенилаланин. Поскольку фенольный гидроксил тирозина существенно пе ионизуется при pH ниже 8, то следует ожидать, что спектр будет оставаться неизмененным при увеличении кислотности среды. Однако было обнаружено, что УФ-поглощение чувствительно к изменению pH даже в кислых растворах, а также к изменению ионной силы раствора при добавлении таких денатурантов, как мочевина, или при частичном гидролизе белка [495, 496]. Следует отметить, что хотя изменение оптической плотности, вызванное этими переменными, и невелико, за ним можно легко наблюдать путем непосредственного сравнения спектров раствора белка в стандартном состоянии и при некоторых других условиях. Типичные результаты наблюдаемых эффектов представлены па рис. 58, на котором изображена зависимость от длины волны повышения оптической плотности раствора инсулина в результате каталитического гидролиза под действием трипсина. Многочисленные попытки истолкования таких данных [c.173]

    Методами спектроскопии поглощения в инфракрасной, ульт-)афиолетовой и видимой областях [65], масс-спектрометрии 65а], а также фотоэлектронной спектроскопии [656] показано, что в условиях равновесия в газовой фазе 2- и 4-гидрокси-пиридины (а также 2- и 4-меркаптопиридины) существуют в основном в виде гидроксисоединений (или меркаптанов). В растворах наблюдается обратная ситуация. В большинстве растворителей 2- и 4-гидроксипиридины существуют преимущественно в форме пиридонового таутомера, причем константа равновесия зависит от полярности растворителя [66, 67]. Константы равновесия 2- и 4-гидроксипиридинов в газовой фазе и в растворах приведены в табл. 4.4. [c.151]

    Для обнаружения циклоалкановых фрагментов используется также ИК-спектроскопия. Однако отнесение полосы 890 см > к колебаниям циклоалкановых колец недостаточно надежно [344], так как в этой области лежат полосы поглощения и полициклических ареновых систем. Но поскольку у более ароматизированных асфальтенов эта полоса отсутствует, то таким образом косвенно подтверждается правильность отнесения ее к циклоалканам. Другие авторы [358] относят к циклоалкановым кольцам полосы поглощения 970 и 1460 см .  [c.168]

    Разработаны методы анализа других специфических загрязнений в ОСМ. В ФРГ (компания Aral) предложен газохроматографический способ количественного определения метанола в отработанных маслах. Степень окисления и нитрования отработанных масел из газовых двигателей предложено оценивать методом ИК-спектроскопии (поглощение при волновом числе соответственно 1724 и 1639 см ). Примеси легколетучих хлоруглеводородов также можно определять ИК-спектроскопически. Соединения типа пер-хлорэтилена, трихлорэтилена и 1,1,1 -трихлорэтана дают характеристические полосы соответственно при 910, 933 и 1084 см . Разрешающая способность метода составляет О, I %. [c.95]

    Для малорастворимых твердых веществ можно получить отражательный спектр. При интенсивном измельчении твердого вещества уменьшается часть светового потока, отражающаяся от его поверхности, а большая часть падающего света проникает и глубь вещества. Эта доля частично поглощается, а частично, после м-ногократного отражения снова диффузно выделяется через поверхность вещества наружу. При таком внутреннем отражении ослабляются участки спектра, связанные с абсорбцией света молекулами. Для дальнейшего уменьшения поверхностного отражения порошкообразное вещество можно смешать с веществом, индифферентным в используемой спектральной области (белый стандарт), и получить известную аналогию с раствором вещества. Отражательная спектроскопия пригодна также для получения спектров поглощения малорастворимых веществ. Этот метод применяют в основном при исследовании состава красок и строения неорганических твердых соединений. Абсорбция света окрашенными катионами зависит от различных факторов от координационного числа, симметрии молекулы и межатомных расстояний в кристаллической решетке соединения. По изменению абсорбции можно сделать выводы об изменениях, происходящих в решетке соединения при включении посторонних ионов. [c.355]

    Наиболее типичным методом проведения экспериментов с временным разрешением в фотохимии является метод импульсного фотолиза. Этот метод первоначально разработали Норриш и Портер в 50-е годы нашего века с целью идентификации промежуточных продуктов реакции в фотохимических системах. Стационарные концентрации промежуточных продуктов — атомов, радикалов или возбужденных соединений, — имеющиеся в стационарных условиях, обычно слишком малы для того, чтобы зарегистрировать их по спектрам поглощения. Однако при использовании импульсного источника света предельно высокой интенсивности удается получить концентрации короткожи-вущих промежуточных соединений, достаточные для спектроскопического наблюдения. Более того, по спектру оптического поглощения можно следить за изменением концентрации промежуточного соединения в зависимости от времени и получать кинетические данные, например времена жизни радикалов. Это направление спектроскопии с высоким временным разрешением часто называется кинетической спектроскопией. (Кинетическая спектроскопия может также использоваться для непрерывной регистрации концентраций подходящих реагентов и конечных продуктов в зависимости от временного интервала после световой вспышки.) С помощью информации, полученной в экспериментах по импульсному фотолизу и касающейся природы и химической активности промежуточных продуктов, были окон- [c.199]

    Метанол широко используется в препаративной электрохимии, например для проведения реакции анодного декарбоксилирования и анодного метоксили-рования. Эпизодически растворитель применялся также при полярографии на КРЭ. Метанол не пригоден в качестве растворителя для вольтамперометрии на платиновом микроэлектроде или кулонометрии при контролируемом потенциале на том же электроде. Метанол находится в жидком состоянии в удобной для работы области температур (от -98 до +64 °С). Имеет весьма высокое давление паров и достаточно высокую диэлектрическую постоянную (33). Максимальная допустимая концентрация составляет 2 10 %. Хотя по своему поведению метанол похож на воду, он сильнее растворяет различные органические соединения. Метанол подходит как растворитель для ультрафиолетовой спектроскопии поглощение наблюдается при 210 нм. Главное применение метанола связано с тем, что он хорошо растворяет сильноосновные электролиты КОН, NaOH, КОМе и NaOMe. Для растворения очень неполярных соединений используются смеси метанола с бензолом. [c.37]

    При помощи инфракрасной спектроскопии и аналитических методов можно определять структурные характеристики молекул, содержащихся во всех фракциях битумов, в частности в асфальтеновых, с расшифровкой типа конденсации, длины алифатических цепей, ароматичности и полярности> ИК-спектроскопию применяют также для изучения порфиринов ванадия и никеля, содержащихся в нефтях и битумах, для исследования кислородсодержащих функциональных групп в окисленных битумах. Таким методом показано, что омыляемые вещества битума содержат главным образом эфирные группы и что почти полностью отсутствуют ангидриды и лактоны. Методом селективного поглощения фракций показано различие химического состава битумов, полученных из разного сырья, а также изменение их строения по мере углубления окисления сырья. Растворы в четыреххлористом углероде или сероуглероде компонентов окисленных битумов (типов гель, золь — гель и золь), полученных разделением с использованием бута-нола-1 и ацетона и подвергнутых инфракрасному исследованию в области спектра 2,5—15 мк мкм) с призмой из хлористого натрия, показали, что в сильнодисперги-руемых битумах типа золь самое высокое содержание ароматических колец в каждом компоненте [480], Количество групп СНз почти одинаково в алифатических и циклических соединениях. Метиленовых групп парафиновых цепей значительно больше содержится в соединениях насыщенного ряда. Как правило, их число уменьшается при переходе битума от типа гель к типам золь — гель и золь. [c.22]

    АБСОРБЦИОННАЯ СПЕКТРОСКОПИЯ, изучает спектры поглощения электромагн. излучения атомами и молекулами в-ва в разл. агрегатных состояниях. Интенсивность светового потока при его прохождении через исследуемую среду уменьшается вследствие превращения энергии излучения в разл. формы внутр. энергии в-ва и (илн) в энергию вторичного излучения. Поглощат. способность в-ва зависит гл. обр. от электронного строения атомов и молекул, а также от длины волны и поляризации падающего света, толщины слоя, концентрации в-ва, т-ры, наличия электрич. и магн. полей. Для измерения поглощат. способности используют спектрофотометры-оптич. приборы, состоящие из источника света, камеры для образцов, монохроматора (призма или дифракционная решетка) н детектора. Сигнал от детектора регистрируется в виде непрерывной кривой (спектра поглощения) или в виде таблиц, если спектрофотометр имеет встроенную ЭВМ. [c.14]

    Как ясно из изложенного материала, в области 800—200 нм не поглощают предельные углеводороды алифатического и алицикли-ческого рядов, такие их производные, как спирты, эфиры и амины. За пределами этой области находится также поглощение монооле-финов и моноацетиленов. Конец полосы поглощения хлористых алкилов, несопряженных карбоновых кислот и их производных попадает в область 200—250 нлг. Вследствие этого подобные соединения не изучаются с помощью обычной ультрафиолетовой спектроскопии. [c.88]

    Для изучения структуры твердых солей, а также растворов можно использовать колебательную инфракрасную и Раман-(комбинационного рассеяния) спектроскопию [30]. Эти методы позволяют получать данные о симметрии молекул и определять силовые постоянные различных типов колебаний. Так, простота инфракрасного спектра циклогептатриенилбромида, трихлорцикло-пропенилтетрахлоралюмината и трифенилметильных солей свидетельствует, что эти соединения обладают очень симметричными структурами (соответственно О /, и О н)- Силовые постоянные, определенные для двух ароматических ионов, образуют ряды, согласующиеся с рядом для бензола, и коррелируют с кристаллографическими длинами связей С—С. Карбениевые ионы обычно характеризуются поглощением в области 1250—1550 см (табл. 2.7.8), достаточно интенсивным за счет больших изменений дипольного момента при возбуждении. Сравнение ИК- и Раман-спектров ряда третичных алкил-катионов позволяет провести полное отнесение полос поглощения. В частности, спектр грег-бутил-катиона аналогичен спектру изоэлектронного ему триметилбора и [c.526]

    По данным инфракрасной спектроскопии, интенсивность полосы поглощения в области 2,9 мкм, соответствующей ОН группе, при 500°С уменьшается. Интенсивность полос поглощения, вызванных копеба-нинми групп СН, СНз и СНз при длине волны 3,5-6,9 мкм, также несколько уменьшеется, а интенсивность абсор>бционной полосы, соответствующей ароматической связи С=С (6,2 мкм), наоборот, увели- [c.172]

    Батохромный сдвиг — в УФ-спектроскопии — смещение полос поглощения в длинноволновую область. Б. С. может происходить как при введении в молекулу органического соединения новых функциональных фупп (например, полоса поглощения бензола при 255 нм смещается в длинноволновую область при введении одной гидроксигруппы примерно на 12—15 нм), так и при добавлении к исследуемому веществу ионизирующих или комплексообразующих добавок (например, полоса поглощения фенола при 270 нм смещается примерно на 15—18 нм в длинноволновую область при добавлении к его раствору NaOH). См. также Гипсохромный сдвиг. [c.44]

    Образование химических связей между поверхностью наполнителя и полимером возможно и при использовании дисперсных на-полиителей, обработанных аппретами. Так, методом ИК-спектроскопии была обнаружена прививка полиэтилена на кварцевый наполнитель, обработанный у минопропилтриэтоксисиланом [488]. Возможность образования между минеральными дисперсными наполнителями и некоторыми полимерами водородных, ионных и координационных связей была установлена методом ИК-спектроскопии по смещению полос поглощения групп КН, СО и ОН полимеров [489]. Аппретирование дисперсных наполнителей влияет и на структурообразование, например ПЭ [487]. Химическое взаимодействие смолы с аппретом, который уже связан химическими связями с поверхностью волокна, может способствовать также улучшению совместимости компонентов в наполненной системе [490]. [c.257]

    В электрич. спектроскопии газов регистрируют поглощение электрич. компоненты радиочастотного электромага. поля, обусловленное переходами между уровнями энергии, соответствующими, вращат. движению молекул, обладающих пост, электрич. моментом (микроволновая спектроскопия). Электрич. радиоспектроскопич. методом является также иоч-циклотронный резонанс, к-рый в равной мере относят и к масс-спектрометрии. [c.491]

    Известно, что на вид края полосы поглощения влияет толщина поглощающей среды [219, 220]. В то же время Льюис [221, 222] наблюдал изменение Ьз-края полосы поглощения платины в катализаторах Р1/т1-Л120з, Р1/цеолит X и Pt/цeoлит У, обусловленное частицами небольшого размера. Тем не менее систематически эффект размера частиц на рентгеновскую спектроскопию края полосы поглощения, по-видимому, не исследовался, хотя в принципе метод может оказаться ценным для выявления природы влияния размера частиц на электронные свойства. Сообщалось также о влиянии адсорбции газа на К-край полосы поглощения никеля в некоторых нанесенных катализаторах [223, 224]. [c.375]

    По данным ИК-спектроскопии и химического анализа, в присутствии меди окисление изопропилбензола в боковой цепи происходит значительно глубже. На это указывает, в частности, заметное уменьшение кол дчества групп СНд (осталась лишь слабая полоса при 1378 сл4 ), что свидетельствует о распаде изопропильной структуры. Появление и усиление интенсивности полосы 2920 см с увеличением времени окисления указывает па образование групп СНа, что в свою очередь свидетельствует об атаке кислорода не только на третичный, но и на первичный углеродный атом. На интенсивное образование групп ОН спиртов, кислот и оксикислот указывают интенсивные полосы при 3400, 1440, 1340 см . Группы С=0 могут находиться в сопряженном (интенсивная полоса 1670 см ) и несо-пряженном (1700—1715 см ) положениях. Наличие сопряжения с кольцом подтверждается заметным увеличением интенсивности полос при 1600, 1500, 770 и 700 см . Особо следует отметить появление полос поглощения при 1230 и 1265 см , что свидетельствует о появлении ароматических альдегидов, кислот, а также фенолов. Это значит, что происходят глубокие термоокислительные превращения группы СН(СНз)2 вплоть до ее отделения от кольца. На это указывает также исчезновение полос монозамещения ароматического кольца в области 1650—1800 см и заметное уменьшение интенсивности других полос замещенных ароматических структур — 3050, 1600, 1500, 750, 700 см , связанное с изменением характера заместителя кольца. О глубоких термоокислительных превращениях изопропильной группы свидетельствует наличие в продуктах окисления углекислого газа, муравьиной кислоты, воды и других низкомолекулярных продуктов (табл. 2). [c.24]

    В работе [60] исслеДованы инфракрасные спектры уксусной и дейтероуксусной кислот, адсорбированных окисью алюминия йз раствора в ССЦ. При малых концентрациях адсорбированных Молекул уксусной и дейтероуксусной кислот в спектре наблюдались полосы поглощения ацетатных ионов в области 1590—1465 и 1560—1420 слгК Адсорбция кислот окисью алюминия из раствора в ССЦ методом инфракрасной спектроскопии изучалась также в работе [6] ]. [c.300]


Смотреть страницы где упоминается термин Спектроскопия поглощения также Поглощение: [c.192]    [c.99]    [c.51]    [c.7]    [c.119]    [c.76]    [c.94]    [c.227]    [c.117]    [c.49]    [c.7]    [c.465]    [c.451]    [c.544]    [c.308]   
Биофизическая химия Т.2 (1984) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Спектроскопия поглощения



© 2025 chem21.info Реклама на сайте