Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жгутиковые

    Многочисленные опыты по определению кривых БПК для водных растворов НЧК различной концентрации, поставленные по стандартной методике, показали, что НЧК очень плохо окисляется биохимически (рис. 11). Биохимический показатель составляет 5—18%, химическое потребление кислорода равно 1,84 мг/мг, биохимическое потребление кислорода 0,14—0,34 мг/мг. Результаты опытов по методике Калабиной М. М. [30] при концентрации НЧК 10 — 600 мг/л показали, что НЧК угнетает развитие сапрофитной микрофлоры. В присутствии 10 — 50 мг/л НЧК появление инфузорий задерживается на одни сутки, 100 мг/л— на трое суток, а 200 мг/л — на 12 суток. Развитие жгутиковых начинает тормозиться при содержании НЧК ЮО мг/л на одни сутки, а при содержании 200 мг/л — на 10 суток. [c.248]


    Упражнение. Жгутиковая бактерия передвигается в химическом градиенте с постоянной скоростью вдоль оси X. В случайные моменты времени она останавливается и с равной вероятностью продолжает движение либо в направлении дг, либо в направлении —дг. Однако вероятность остановки за единичное время зависит от направления движения, так что она в конечном счете влияет на результирующее смещение X (/). Найдите характеристическую функцию величины (I), а также ее среднее значение и дисперсию .  [c.370]

    Специалисты в области растровой электронной микроскопии вновь открыли для себя метод сушки -в критической точке, который был впервые разработан тридцать лет назад для изучения бактериальных жгутиковых [370]. Основная идея метода состоит в том, что двухфазные состояния (пар и жидкость) большинства летучих жидкостей исчезают при некоторой температуре и давлении — в так называемой критической точке. В критической точке две фазы находятся в равновесии, фазовая граница исчезает и, следовательно, отсутствует поверхностное натяжение. Уже было много написано о теории и практике сушки в критической точке, и подробности методики можно найти в работах [371, 372]. [c.251]

    Аэротенки — огромные резервуары из железобетона, в которых очистка происходит с помощью активного ила из бактерий и микроскопических животных, которые бурно развиваются в этих сооружениях, чему способствуют органические вещества сточных вод и избыток кислорода, поступающего с потоком подаваемого воздуха. Бактерии, склеивающиеся в хлопья, вьщеляют в среду ферменты, разрушающие органические загрязнения. Ил с хлопьями оседает, отделяясь от очищенной воды. Инфузории, жгутиковые, амебы, коловратки и другие мельчайшие животные, пожирая бактерии, не слипшиеся в хлопья, тем самым омолаживают бактериальную массу ила. Сточные воды сначала подвергают механической, а после химической очистке для удаления болезнетворных бактерий путем хлорирования жидким хлором или хлорной известью. Для дезинфекции используют также ультразвук, озонирование, электролиз и другие методы. [c.30]

    Волокно АФС - объемная масса, состоящая из мелких частиц жгутиковой свивки и очень мелких лепестков. За счет горячей обработки волокна и присутствия в его составе каолина и естественной смолы сухой жгутик волокна приобретает структурную стабильность и упругость. [c.133]

    Для биохимической очистки фенолсодержащих сточных в используют микроорганизмы в основном двух видов активный у представляющий собой комплекс различных микроорганизм (бактерий, нитчатых, жгутиковых, инфузорий и других просте ших), и культуры специфических бактерий [7, 8]. [c.357]

    На электронных микрофотографиях на внутренней стороне митохондриальной мембраны видны характерные частицы, со- единенные с ней маленькими жгутиками. После длительных дебатов о возможности появления артефактов при окрашивании препаратов в электронной микроскопии сейчас считают, что эти частицы не что иное, как молекулы АТРазы. Исследователей главным образом занимает вопрос какие молекулы и какие мо--лекулярные механизмы участвуют в ионном транспорте, синтезе и гидролизе АТР, и как все это связано с жгутиковыми частицами  [c.180]


    Диатомовые водоросли, жгутиковые [c.212]

    Простейшие лишены сложнодифференцированных органов чувств, но они чувствительны к действию теплоты, света, различных химических веществ, а также к действию силы тяжести и электричества. Большинству простейших свойствен голозойный способ питания. Оии заглатывают плотные частицы пищи, переваривают и превращают их в растворимые вещества, за счет которых питаегся клетка или клетки организма. Простейшие размножаются путем деления клетки пополам. Для жгутиковых характерно продольное деление, а для ресничных— поперечное. Каждая часть клетки обладает всеми физиологическими свойствами и генетическими потенциями родительской клетки. У некоторых простейших имеется также половой способ размножения. [c.273]

    Основную часть активного ила составляют бактерии. На 1 г активного ила приходится ЫО бактерий с суммарной поверхностью 1200 м2. Бактерии представлены а- н р-мезосапробными группами. Их видовой состав зависит от того, какими веществами загрязнена сточная вода. Биоценоз активного ила развивается в условиях ярко выраженных окислительных аэробных процессов, поэтому наряду с други.ми микробами в большом количестве содержатся в нем бактерни-ннтрификаторы (до 3-10 па 1 г активного ила). Кроме одноклеточных бактернй в активном иле развиваются в небольшом количестве нитчатые бактерии, дрожжи и отдельные нити плесневых грибов. Микрофауна активного ила представлена в основном одноклеточными животными — простейшими, но в нем присутствуют также более сложно организованные представители животного мира, например коловратки н круглые черви. Из одноклеточных животных развиваются саркодовые, жгутиковые, ресничные и сосущие инфузории. [c.305]

    ТОКСИНЫ ОДНОКЛЕТОЧНЫХ, яды небелковой природы. Нанб. изучен сакситоксин (см. ф-лу) — крист., хорошо раств. в метаноле, сп., це раств. в неполярпых р-рителях гигр., устойчив в кислых средах, разлаг. в р рах щелочей, не разлаг. при нагрев, до 110 °С. Продуцируются одноклеточными жгутиковыми, содержащимися в определ. видах планктона. Отравление наступает при употреблении в пищу морских животных (моллюсков, крабов и др,), питающихся ядовитым планктоном ЛДзо 8-10 - мг/кг (белые мыши, [c.582]

    В 80%-ном ацетоне хлорофилл а имеет интенсивную и узкую полосу поглощения с Ятах = 663 НМ (15 100 СМ ) у хлорофилла а в составе хлоропластов этот максимум сдвинут в красную область — основная часть хлорофилла поглощает при 678 нм. В зеленых листьях почти неизменно присутствует хлорофилл Ь (рис. 13-19). Максимум поглощения этого соединения в ацетоне равен 635 нм (15 800 ом ). Хлорофилл с обнаруживается у диатомей, бурых водорослей (РЬаеорНу1а) и панцирных жгутиковых (рис. 1-7)-, он не содержит фитольной группы и, как полагают, является смесью двух соединений. Хлорофилл й, который наряду С хлорофиллом а присутствует в некоторых видах Я1ю(1орНу1а (гл. 1, разд. Г, 3), охарактеризован лишь частично [77]. [c.40]

    Другой ПОДТИП простейших, жгутиковые (Mastigophora), передни-гающ,иеся с помош,ью небольшого числа жгутиков, служит связуюш,им-звеном между животными и водорослями. Euglena viridis (эвглена), маленький пресноводный организм с гибким конусовидным телом и длинным жгутиком на переднем конце, содержит зеленые хлоропласты. и имеет светочувствительное глазное пятно , благодаря которому кон- [c.44]

    Гемофлагелляты (Haemoflagellata) являются возбудителями ряда самых страшных болезней человека. Трипаносомы (род Trypanosoma) проникают в клетки нервной системы, вызывая сонную болезнь. Некоторые жгутиковые находятся в симбиотических отношениях с другими организмами. Наиболее сложные из известных в настоящее время жгутиковых (рис. 1-7) обитают в пищеварительном тракте термитов и тараканов. В клетках этих простейших в свою очередь живут бактерии-симбионты, которые обеспечивают термитов ферментами, необходимыми для переваривания целлюлозы древесины. [c.45]

    Некоторые одноклеточные водоросли достигают значительных размеров. Примером может служить Асе1аЬи1аг1а (рис. 1-9), произрастающая в теплых водах Средиземноморья и других тропических морей. Клетка этой водоросли содержит одно ядро, расположенное в ее основании (ризоиде). У взрослой водоросли, жизненный цикл которой длится от 6 месяцев (в лабораторных условиях) до 1 года (в природе), формируется характерного вида вырост (шляпка). По завершении развития этого образования ядро делится примерно на Ю вторичных ядер, которые мигрируют вверх по стебельку и в радиальные лучи шляпки, где образуются цисты. Затем шляпка отмирает и цисты высвобождаются в них происходит мейоз, и образовавшиеся жгутиковые гаметы попарно сливаются, формируя зиготу, из которой вновь вырастает диплоидная водоросль. [c.49]

    Рассматривая любую пробу водорослей из пруда или аквариума под микроскопом, всегда можно обнаружить крошечные диатомеи, медленно, как лодочки, скользящие в воде. Диатомовые водоросли, относящиеся к группе СЬгу8орЬу1а, широко известны из-за наличия у них наружной раковины из двуокиси кремния. Эти кремниевые скелеты, ажурные, нередко поразительно красивые (рис. 1-9), отличаются чрезвычайной прочностью они образуют обширные древние отложения диатомовой земли . Передвигаются диатомеи очень медленно, причем самым необычным способом — посредством перетекания протоплазмы по желобку на поверхности клетки. Диатомовые водоросли составляют существенную часть морского планктона. По оценкам, три четверти органических веществ в мире продуцируется диатомовыми водорослями и панцирными жгутиковыми. Подобно бурым водорослям, хризофиты содержат пигмент фукоксантин. [c.49]

    Некоторые сине-зеленые водоросли, а также жгутиковые Euglena и-СкШтуйотопаз содержат альдолазы обоих классов. [c.165]

    Смешанное кислое брожение встречается не только у бактерий. Так, трихомонады, паразитические жгутиковые, относящиеся к типу простейших, тоже способны в анаэробных условиях превращать пируват в ацетат, сукцинат, СО2 и Н2. У этих организмов нет митохондрий, но имеются напоминающие микротельца частицы, названные гидрогеносома-ми, способные превращать пируват в ацетат, СО2 и Нг [39]. Фермент, катализирующий расщепление пирувата, по-видимому, не содержит ли-поата и, возможно, близок по свойствам пируват ферредоксин—оксидо-редуктазе клостридий [уравнение (8-66)]. В гидрогеносомах находится также активная гидрогеназа. [c.351]


    Биологический контроль помогает установить причину нарушения работы сооружений, например перегрузка стоков, поступление кислых вод, малая подача воздуха [30]. Перегрузка сточной водой аэротенков вызывает изменение состава организмов в активном иле уменьшается количество видов простейших, преобладают бесцветные жгутиковые [40]. При этом возникает запах сероводорода, что связано с разрушением больших количеств белка или с недостатком кислорода. Сероводород окисляют серные бактерии Beggiatoa alba, которым для этого необходимы микроколичества кислорода. [c.188]

    Целлюлоза присутствует во всех растениях от высокоорганизованных деревьев до примитивных организмов, таких, как морские водоросли, жгутиковые и бактерии. Целлюлозу можно обнаружить и у представителей животного мира туницин — кутикулярное вещество оболочников идентично растительной целлюлозе [211]. Содержание целлюлозы в растительном материале колеблется в зависимости от происхождения. Высокая массовая доля целлюлозы (%) наблюдается в семенных волосках хлопка и капока (95—99), лубяных волокнах рами (90—80), льна, конопл , в бамбуке (40— 50), древесине (40—50). Меньше содержат целлюлозы кора деревьев (20—30), мхи (25—30), хвощи (20—25) и бактерии (20—30). На процесс выделения целлюлозы влияют сопровождающие ее вещества. Жиры, воски, белки, пектиновые вещества можно легко удалить экстрагированием органическими растворителями или обработкой щелочью (например, при очистке волокон хлопка и рами). [c.52]

    Кольца Р и Ь, имеющиеся только у грамотрицательных эубактерий, локализованы соответственно в пептидогликановом слое и в наружной мембране. Особенности строения базального тела определяются, таким образом, строением клеточной стенки. Ин-тактность последней необходима для движения жгутиковых бак- [c.40]

    Для работы двигательного аппарата прокариот необходима энергия. Установлено, что движение жгутиковых прокариот обеспечивается энергией трансмембранного элекфохимического потенциала (АДн+)> причем обе его составляющие — электрическая (АУ) и концентрационная (А pH) — поддерживают движение. Скорость вращения жгутиков прямо зависит от величины мембранного потенциала. Таким образом, прокариотная клетка обладает механизмом, позволяющим превращать элекфохимическую форму энергии непосредственно в механическую. Молекулярное устройство, обеспечивающее это превращение, к настоящему времени не выяснено, но можно полагать, что оно должно быть весьма эффективным, так как, по проведенным расчетам, энергия, расходуемая на движение, составляет десятые доли процента от общего количества энергетических потребностей клетки. [c.41]

    Изучение строения и химического состава аксиальных фибрилл спирохет обнаружило их близкое сходство с бактериальными жгутиками. Отличие заключается в том, что аксиальные фибриллы спирохет — внутриклеточные структуры, но обеспечивают движение как в жидкой среде, так и по твердому субстрату. Движение спирохет осуществляется за счет вращения фибрилл в периплазматическом пространстве между пептидогликановым слоем и наружной мембраной клеточной стенки, вызывающего эластичную волну на поверхности клеточной стенки. Спирохеты совершают движения трех типов быстро вращаются вокруг длинной оси спирали, способны к изгибанию клеток и осуществляют передвижение по винтовому или волнообразному пути. Для спирохет (так же как для типичных жгутиковых бактерий) показано, что движение обеспечивается энергией в форме Арн+- [c.42]

    По другой гипотезе, получивщей распространение в последние годы, скользящее движение связано с особенностями строения клеточной стенки подвижных безжгутиковых форм — наличием белкового слоя, состоящего из упорядоченно расположенных фибрилл, аналогичных нитям жгутиков, с той разницей, что находятся фибриллы внутри клеточной стенки. У некоторых скользящих бактерий описаны структуры, весьма напоминающие базальные тела жгутиковых форм. Вращательное движение фибрилл, запускаемое этими структурами, приводит к появлению на поверхности клетки так называемой бегущей волны, т. е. движущихся микроскопических выпуклостей клеточной стенки, в результате чего клетка отталкивается от твердого или вязкого субстрата. На скольжение расходуется около 5 % энергии от общего объема клеточных энергетических затрат. Скользящее движение в разных группах бактерий обеспечивается энергией в форме АТФ или АЦн+- [c.43]

    Внешние проявления РА зависят от вида АГ и величины клеток. У бактерий взаимодействие соматических АГ (0-АГ) со специфическими АТ происходит медленно и через 18 — 20 ч образуется мелкозернистый осадок. При встряхивании мелкие зерна аг-глютината не разбиваются. Подобная агглютинация наблюдается у возбудителей туляремии, бруцеллеза и др. Наличие жгутикового Я-АГ (сальмонеллы брюшного тифа, паратифов) обусловливает быстрое появление агглютинации. Через 2 —4 ч образуются легко разбивающиеся крупные рыхлые хлопья (рис. 1.22). [c.60]


Смотреть страницы где упоминается термин Жгутиковые: [c.242]    [c.246]    [c.274]    [c.275]    [c.56]    [c.334]    [c.528]    [c.44]    [c.45]    [c.47]    [c.102]    [c.172]    [c.176]    [c.178]    [c.326]    [c.336]    [c.307]    [c.242]    [c.246]    [c.110]    [c.361]    [c.44]    [c.116]   
Биохимия Том 3 (1980) -- [ c.44 , c.45 ]

Общая микробиология (1987) -- [ c.114 ]

Генетика человека Т.3 (1990) -- [ c.116 ]

Физика моря Изд.4 (1968) -- [ c.16 ]




ПОИСК







© 2025 chem21.info Реклама на сайте