Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растровая электронная микроскопия

Рис. 60. Принципиальная схема растрового электронного микроскопа Рис. 60. <a href="/info/24285">Принципиальная схема</a> <a href="/info/1529510">растрового электронного</a> микроскопа

    Фрактографическое исследование композиционных материалов методом растровой электронной микроскопии (рис. 2) показало, что образцы представляют собой матрицу с равномерно распределенными в ней углеродными филаментами, структура которых полностью сохраняется. [c.208]

    Электронно-микроскопический анализ. Этот метод дает представление о строении кристаллических областей в асфальтенах и дает наглядную картину об их надмолекулярной организации. Исследования выполняются в просвечивающих и сканирующих (растровых)- электронных микроскопах [329, 330]. Просвечивающие электронные микроскопы позволяют одновременно получать как электронно-микроскопический снимок, так и электронограмму в области больших и малых углов. Разрешающая способность их составляет 15—2 нм, а для сканирующих микроскопов 3—5 нм. Пучок электронов вызывает значительный разогрев и даже плавление образцов, поэтому просвечивающая электронная микроскопия применяется для объектов, имеющих незначительную толщину,— несколько десятков нанометров. Для этого образцы специальным образом готовят получают либо тонкие пленки, либо с помощью ультрамикротомов готовят срезы толщиной 10—20 нм. Из косвенных методов для исследования структуры асфальтенов получил распространение метод реплик. Для исследования используют мелкодисперсные порошки асфальтенов [325] или растворы в бензоле [319]. В первом случае асфальтены помещают на угольную (аморфную) подложку на медной сетке. С целью определения фоновых микропримесей проводят контрольные съемки пустой подложки. Во втором случае бензольные 0,1 % растворы асфальтенов диспергируют на поверхность полированного стекла с частотой излучателя 35 кГц. Далее стекло.с пленкой асфальтенов помещают в вакуумный пост и растворитель откачивают в течение 20 мин. Для контроля сходимости результатов с поверхности пленки асфальтенов получают реплику двумя способами. Одноступенчатая реплика образовывается напылением угольной пленки, а двухступенчатая — чистого алюминия толщиной не менее 0,2 мм. Затем асфальтеновую пленку растворяют в бензоле и отдельную угольную реплику оттеняют платиной. Во втором случае на обратную сторону отдельной алюминиевой фольги напыляют платиноугольную реплику толщиной 20—30 нм, а алюминиевую фольгу затем растворяют в азотной кислоте [331]. [c.158]

    Растровая сканирующая электронная микроскопия. Растровый электронный микроскоп (РЭМ) — прибор, в основу работы которого положен телевизионный принцип развертки тонкого пучка электронов (или ионов) на поверхности непрозрачного исследуемого образца. Пучок электронов, падающий на поверхность образца, взаимодействует с веществом, следствием чего является возникновение целого ряда физических явлений (рис. 59). Регистрируя соответствующими датчиками то или иное излучение (например, вторичные электроны) и подавая сигналы на кинескоп, получают рельефную картину изображения поверхности образца на экране. [c.149]


    Важную информацию получают при исследовании поверхности излома цементного камня методами электронной микроскопии, особенно растровой электронной микроскопии в сочетании с рентгеновским микроанализатором. Эти методы позволяют наблюдать форму и размеры кристаллов при увеличении в 50—100 тыс. раз, характер их взаимного расположения и срастания, форму и размер пор. [c.117]

    Локальный рентгеноспектральный анализ. Получил широкое распространение растровый электронный микроскоп (РЭМ) для построения изображения при использовании рентгеновского излучения (см. рис. 59). [c.151]

    S Е A i А (США). Растровый электронный микроскоп, работающий при ускоряющих напряжениях до 50 кВ м имеющий предельное разрешение 10 им в режиме вторичной электронной эмиссии. Микроскоп может использоваться вместе с рентгеновским микроанализатором. [c.154]

    С W i к S с а п - 5 О А (США). Растровый электронный микроскоп. При ускоряющем напряжении 15 кВ имеет разрешение 5 нм, а при 1 кВ — 25 нм. Микроскоп имеет максимальное увеличение в 220 000 раз. У микроскопа имеется приставка для нагревания изображение можио наблюдать на телевизионном экране. [c.154]

    На образовании эмиссии электронов методом бомбардировки г[оверхности сканирующим пучком электронов с получением соответствующего телевизионного изображения основан метод растровой электронной микроскопии. [c.155]

    Для выяснения влияния предварительной обработки поверхности углеродных волокон на образование и качество покрытия были проведены опыты по осаждению меди на необработанное в окислителе волокно, подвергнутое термообработке в воздушной среде при температуре 500° С в течение 1 мин, и волокно, прошедшее обработку в 65%-НОЙ НКОд в течение 5 мин. Дальнейшие сенсибилизация, активация и металлизация проводились в одинаковых условиях. В случае, если волокно не прошло окислительную обработку, часто происходит образование одной рубашки на группе элементарных волокон. На рис. 1, (см. вклейку) полученном на растровом электронном микроскопе, показана группа, состоящая из четырех элементарных волокон. При разрыве нити одно элементарное волокно было удалено из оболочки. Видно отслоение и самой оболочки, что свидетельствует о плохой адгезии покрытия к поверхности волокна. Следует также учитывать и крутку волокна, которая благодаря тесному контакту элементарных волокон между собой препятствует проникновению раствора внутрь. Характер разрыва углеродных волокон, прошедших предварительное окисление на воздухе или в растворе азотной кислоты, как правило, свидетельствует о хорошей адгезии покрытия к поверхности волокна. Анализ снимков позволяет сделать вывод о необходимости предварительной обработки углеродных волокон в окислительной среде. [c.149]

    В работе изложены результаты экспериментальных исследований, связанных с поверхностной обработкой углеродных волокон, нанесением медных покрытий. С помощью растровой электронной микроскопии изучено влияние предварительной обработки углеродных волокон на адгезию покрытия к поверхности волокон. Было обнаружено, что предварительная обработка в окислительной среде способствует улучшению адгезии. Показано, что качество покрытия зависит от режима осаждения и состава раствора. Рис. 3, библиогр. 5. [c.230]

    Нейл, В а ч о н, М е р х а у з. Исследование возникновения паровых пузырей на поверхности нержавеющей стали с помощью растрового электронного микроскопа. — Теплопередача, 1974, № 2, с. 15—24. [c.80]

    При проведении экспериментальных исследований кипения воды на поверхностях из различных материалов с различной шероховатостью наблюдалось возникновение зародышей паровых пузырьков в замкнутых полостях самых разнообразных неправильных форм. Новые данные экспериментального исследования кипения воды с помош ью растрового электронного микроскопа [18] согласуются с нашими результатами. [c.112]

    РАСТРОВАЯ ЭЛЕКТРОННАЯ МИКРОСКОПИЯ И РЕНТГЕНОВСКИЙ МИКРОАНАЛИЗ [c.1]

    Растровая электронная микроскопия и рентгеновский Р24 микроанализ В 2-х книгах. Книга 1. Пер. с англ. — М. Мир, 1984. — 303 с., ил. [c.4]

    Монография содержит все необходимые сведения по растровой электронной микроскопии и рентгеновскому микроанализу и может служить ценным практическим руководством для исследователей, студентов и лиц, впервые столкнувшихся с необходимостью применения электронно-зондовых методик. Русское издание дополнено списком работ отечественных и зарубежных авторов, вышедших с середины 1978 г. [c.6]

    При подготовке монографии были опущены некоторые разделы предыдущего издания. В частности, были исключены главы Механизмы формирования контраста изображения и Ионно-ионный микроанализ по массам . Эти и некоторые другие темы будут освещены во втором томе с предположительным названием Специальные методы растровой электронной микроскопии и рентгеновского микроанализа , предназначенном уже для специалистов, освоивших вводный курс. [c.8]

    Ю. и. Дытнерским, Н. С. Орловым, Н. С. Снегиревой проведено сравнение результатов исследования ядерных мембран гидродинамическим методом, объединяющим пузырьковый метод и метод продавливания растворителя, и методом растровой электронной микроскопии. Принципиальная схема установки для определения параметров пористой [c.102]


    Исследоваиия прочностных и деформационньк свойств кольцевых образцов проводили при торцевом сжатии с записью диафамм деформирования. Высокотемпературное воздействие проводили в диапазоне температур 500-1000 "С с выдержкой при указанных температурах. Получен разный характер деформирования при сжатии образцов при различном содержании пироуглерода, оценена повреждаемость, вносимая предварительным температурным воздействием. Исследованиями микросфуктуры на растровом электронном микроскопе установлена однородность насыщения пироуглеродом каркасов из ТРГ, подтверждена зависимость характера деформирования КМ от содержания пироуглерода. Проведенные исследования показали преимущества разработанных КМ по прочностным и упругим харатеристикам по сравнению с ТРГ при одинаковой плотности материалов. [c.71]

    Р Э М М А. Растровый электронный микроскоп и микроанализатор позволяет фотографировать изображения поверхности объекта с экрана кинескопа и спетового микроскопа проводить визуальный осмотр исследуемого участка с помощью зеркального,микроскопа и на основании визуального осмотра выбирать место проведения локального анализа химического состава исследуемого веще-С1ва выполнять локальный анализ химического состава исследуемого вещества и определять процентное содержание последнего. [c.153]

    Stereos an 180 (Англия). Растровый электронный микроскоп работает при ускоряющих напряжениях ло 60 кВ, при этом достигается предельное разрешение 7 нм в растрово-просвечивающем режиме и 10 нм в режиме вторичной электронной эмиссии. У микроскопа имеются приставки для нагревания до 400°С и деформации образца. Микроскоп может использоваться вместе со спектрометром. [c.154]

    JSM-2 (Япония). Растровый электронный микроскоп с разрешающей способностью в 25 им, увеличением от 100 до ЮООООх и ускоряющим напряжением 5—50 кВ. [c.154]

    HFS-2 (Япония). Растровый электронный микроскоп работает при ускоряющих напряжениях до 25 кВ,. при этом достигаются следующие предельные разрешения и максимальные увеличения в растрово-просвечивающем режиме 3 нм и 500 000 раз в режиме вторичной электронной эмиссии 3 нм и 250 000 раз. Сканирующий электронный микроскоп используется вместе с рентгеновским микроанзлизатором и имеет предельное разрешение 7 нм и максимальное увеличение 200 ООО раз. [c.154]

    RSEM (Голландия). Растровый электронный микроскоп работает при ускоряющих напряжениях до 50 кВ, при этом достигается предельное разрешение 10 нм как при растрово-просвечивающем режиме, так и в режиме электронной эмиссии. Микроскоп имеет телевизионное изображение и может использоваться совместно с рентгеновским микроанализатором. [c.154]

    Камебакс (Франция). Растровый электронный микроскоп и микроанализатор фирмы Сатеса . Разрешающая способность микроскопа 7—10 нм, увеличение — от 30 до 240 ОООХ. [c.154]

    Рентгеноспектральный микроанализ основан на возбуждении электронным зондом характеристич. рентгеновского излучения исследуемого образца (см. Рентгеновская спектроскопия). Рентгеновские микроанализаторы создают на основе просвечивающих и растровых электронных микроскопов. Они состоят из электронной пушки с системой линз для формирования электронного зонда, рентгеновского спектрометра, к-рый разлагает излучение в спектр и преобразует его в электрич. сигналы, и регистрирующей системы. В приборе поддерживается высокий вакуум. По спектру характеристич. рентгеновского излучения определяют атомные номера элементов, а по интенсивности спектральных линий — их концентрации. Метод примен. для качеств. и количеств, определения всех хим. элементов, начиная с В абсолютные и относит, пределы обнаружения соотв. 10" —10 г и 10 —10 %. Относит, стандартное отклонение при количеств, анализе 0,02—0,05. Объем образца, к-рый можно анализировать данным методом, зависит гл. оор. от энергии первичных электронов [1—50 кэВ, или (0,16—8)-10 Дж], плотности образца, степени поглощения излучения и составляет 0,1—10 мкм . Рентгеноспектральный анализ примеп. для определения состава микровключений, распределения элементов в тонких слоях и фазового анализа твердых в-в, [c.701]

    Растровые электронные микроскопы, в которых изображение создается электронами, отра-/кеиными исследуемой поверхностью, причем пучок электронов сканирует поверхность подобно лучу в телевизионном кинескопе. [c.169]

    И. Л. Горелова и Т. Ю. Любимова [142] методом растровой электронной микроскопии установили, что дисперсность кристаллизационной структуры цементного камня после достижения максимальных значений в период до одних суток уменьшается к трем суткам, вследствие роста отдельных волокнистых кристаллов гидросиликатов, в дальнейшем — за счет взаимного переплетения кристаллов, способных огибать препятствия, создавать объемную ткань и полностью срастаться с исчезновением межкристалличе-ских границ. Образование однородных, плотных участков структуры, постепенно сливающихся друг с другом, является завершающей стадией формирования микроструктуры цементного камня. [c.168]

    В случае полной герметизации образца, подготавливаемого к электронномикроскопическому исследованию, обычно не наблюдается шарообразных образований, о чем свидетельствуют, например, микрофотографии реплик в работах [491, 492[, Швите с сотрудниками и снимки, полученные на растровом электронном микроскопе, сделанные со сколов самых разнообразнейших образцов вяжущих в ранние и поздние сроки твердения. [c.216]

    Исследование методами световой и растровой электронной микроскопии износа пары никель — никелевый сплав при трении без смазки позволило выяснить, что в начальный период износ является абразивным, обусловленным шероховатостью поверхностей. При этом происходит схватывание со сдвиговым разрушением и переносом сплава на поверхность никеля. При дальнейшем испытании непрерывное схваты вание и отпел ние епут к расслоению метал- [c.17]

    Растровая (сканирующая) микроскопия. В растровых электронных микроскопах (РЭМ рис. 2) электронный луч, сжатый магн. линзами в тонкий (1-10 нм) зонд, сканирует пов-сть образца, формируя на ней растр из неск. тыс. параллельных линий. Возникающее при электронной бомбардировке пов-сги вторичные излучения (вторичная эмиссия электронов, оже-электронная эмиссия и др.) регистрируются разл. детекторами и преобразуются в видеосигаалы, модулирующие электронный луч в ЭЛТ. Развертки лучей в колонне РЭМ и в ЭЛТ синхронны, поэтому на экране ЭЛТ появляется изображение, представляющее собой картину распределения интенсивности одного из вторичных излучений по сканируемой [c.440]

    Методами рентгеновской дифрактометрин и растровой электронной микроскопии изучена морфология кристаллов Сбо, выращенных из раствора в гексане. Кристаллы имеют форму декагоначьног призмы длиной до 300 мкм и диаметром до 70 мкм. Измеренные на оптическом гониометре углы между призматическими гранями варьируют от 35,2 до 36,8", составляя в среднем 36 , [c.131]

    В первой книге монографии известных американских специалистов изложены стандартные методы растровой электронной микроскопии и некоторые аспекты рентгеновского микроанализа. Рассмотрены особенности электронной оитики приборов, взаимодействие электронов с твердым телом, теория формирования изображения в растровом микроскопе, а также разрешение, информативность режимов вторичных и отраженных электронов, рентгеновская спектрометрия с дисперсией по энергии и длине волны и качественный рентгеновский микроанализ. [c.4]

    Годы, прошедшие с момента выхода предыдуш,его издания данной монографии (имеется перевод Практическая растровая электронная микроскопия.—М. Мир, 1978), ознаменовались бурным развитием принципов электронно- и ионно-зондовой аппаратуры и методов исследования. В первую очередь сюда следует отнести создание серийных растровых оже-электронных микроанализаторов, таких, как ЛАМР-10 (фирма ЛЕОЬ), установок электронно- и ионно-лучевой литографии, метрологических и технологических растровых электронных микроскопов и т. д. Существенно улучшились параметры приборов. Так, сейчас серийные растровые электронные микроскопы с обычным вольфрамовым термокатодом обладают гарантированным разрешением 50—60 А, модели высшего класса с наиболее высокими характеристиками имеют встроенную мини-ЭВМ, с помощью которой автоматически устанавливается оптимальный режим работы прибора, существенно облегчилось и стало более удобным обращение с прибором. В ряде случаев вместо обычных паромасляных диффузионных насосов для откачки используются турбомолекулярные и ионные насосы, создающие чистый вакуум вблизи образца, за счет чего снижается скорость роста пленки углеводородных загрязнений на объекте. [c.5]

    Существенным дополнением является материал, касающийся приготовления биологических образцов и нанесения проводящих покрытий. Из-за значительных трудностей, с которыми сопряжена надлежащая подготовка биологических образцов для исследования и анализа в растровом электронном микроскопе, этот вопрос рассмотрен в деталях. Отметим, что изложенный материал имеет ценность не только для биологов, но и для многих небиологичеоких дисциплин, в которых для анализа в растровом микроскопе приходится иметь дело с хрупкими образцами, часто содержащими воду или другие жидкости. К таким объектам относятся полимеры, красители, продукты коррозии, текстильные волокна н многое другое. [c.8]

    В век быстро развивающейся техники ученому необходимо наблюдать, исследовать и правильно объяснять явления, происходящие на микронном (mikm) и субмикронном уровнях. Растровый электронный микроскоп и рентгеновский микроанализатор— это два прибора с большими возможностями, позволяющие на таком уровне наблюдать и изучать неоднородные органические и неорганические материалы и поверхности. В обоих приборах исследуемая область или анализируемый микрообъем облучаются тонко сфокусированным электронным пучком, либо неподвижным, либо разворачиваемым в растр по поверхности образца. При взаимодействии электронного пучка с поверхностью образца возникают следующие типы сигналов вторичные электроны, отраженные электроны, оже-электроны, характеристическое рентгеновское излучение и фотоны различных энергий. Эти сигналы исходят из специфических эмиссионных областей внутри образца и могут быть использованы для изучения многих характеристик объекта (состава, топографии поверхности, кристаллографической ориентации и т. д.). [c.9]

    В растровом электронном микроскопе (РЭМ) наибольший интерес представляют сигналы, создаваемые вторичными и отраженными электронами, поскольку они меняются при изменении топографии поверхности по мере того, как электронный луч сканирует по образцу. Вторичная электронная эмиссия возникает в объеме вблизи области падения пучка, что позволяет получать изображения с относительно высоким разрешением. Объемность изображения возникает за счет большой глубины фокуса растрового электронного микроскопа, а также эффекта оттенения рельефа контраста во вторичных электронах. Возможны и другие тииы сигналов, которые оказываются также полезными во многих случаях. [c.9]


Смотреть страницы где упоминается термин Растровая электронная микроскопия: [c.87]    [c.24]    [c.28]    [c.153]    [c.31]    [c.53]    [c.700]    [c.355]    [c.356]    [c.611]    [c.441]    [c.7]   
Смотреть главы в:

Кристаллография рентгенография и электронная микроскопия -> Растровая электронная микроскопия




ПОИСК





Смотрите так же термины и статьи:

Микроскоп

Микроскоп электронный

Микроскопия

Электронная микроскопия

Электронная микроскопия микроскоп



© 2025 chem21.info Реклама на сайте