Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Клеточные стенки строение

Рис. 8.12. Схема строения клеточной стенки а - расположение микрофибрилл целлюлозы в различных слоях б - расположение ст рук-турных полисахаридов в первичной стенке Рис. 8.12. Схема <a href="/info/1252664">строения клеточной стенки</a> а - <a href="/info/765567">расположение микрофибрилл</a> целлюлозы в <a href="/info/983622">различных слоях</a> б - расположение ст рук-турных полисахаридов в первичной стенке

Рис. 35. Схема строения клеточной стенки трахеид и либриформа Рис. 35. Схема <a href="/info/1252664">строения клеточной стенки</a> трахеид и либриформа
    ГЕМИЦЕЛЛЮЛОЗЫ — полисахариды, входящие в состав клеточной стенки растительной ткани наряду с целлюлозой и лигнином. Часть Г. волокнистого строения является устойчивой к действию щелочи. Присутствие Г. в целлюлозной массе ухудшает качество целлюлозы наоборот, в производстве бумаги Г. улучшает процесс размола и механические свойства бумаги. [c.68]

Рис. 6.10. Схема строения клеточной стенки [56] а М- срединная платинка Р- первичная стенка - наружный спой вторичной стенки 2 - срединный слой вторичной стенки 3 - внутренний спой вторичной иенки 6 -поперечный разрез трахеиды сосны Рис. 6.10. Схема <a href="/info/1252664">строения клеточной стенки</a> [56] а М- срединная платинка Р- <a href="/info/1002069">первичная стенка</a> - наружный спой <a href="/info/1001644">вторичной стенки</a> 2 - срединный <a href="/info/1408859">слой вторичной</a> стенки 3 - внутренний спой вторичной иенки 6 -<a href="/info/221508">поперечный разрез</a> трахеиды сосны
    Все методы выделения лигнина можно подразделить на две группы методы, основанные на удалении полисахаридов, с получением лигнина в виде нерастворимого остатка методы, основанные на переводе лигнина в раствор с последующим осаждением (получение препаратов растворимых лигнинов). Нерастворимые препараты лигнина, имеющие подобно природному лигнину сетчатую структуру, более или менее сохраняют морфологическое строение клеточной стенки, но, естественно, более рыхлое. Растворимые лигнины после осаждения, очистки и сушки имеют вид порошков. [c.367]

    Г. Строение клеточных стенок бактерий [c.388]

    Клеточная стенка (оболочка клетки) состоит из нескольких слоев, отличающихся друг от друга строением, физическими свойствами и химическим составом. Подробнее всего изучено строение клеточной стенки трахеид (рис. 8.10, а). [c.214]

    Функции солода и культур плесневых грибов не ограничиваются осахариванием крахмала, в них входят накопление в сусле достаточного количества органического азота для питания дрожжей и частичное растворение клеточных стенок эндосперма сырья. В осуществлении этих процессов, а также в выращивании солода и плесневых грибов участвуют многочисленные ферменты, поэтому необходимо знание их химической природы, строения и механизма действия. [c.114]


    Строение и состав клеточной стенки [c.214]

    Целью работы является исследование строения структурных полимеров клеточной стенки мицелиальных грибов и разработка научных основ использования их биомассы для получения ценных в практическом отношении продуктов. [c.162]

    Эта схема была подробно рассмотрена в ряде работ. Например, в работе [58] было высказано предположение о возможности протекания этих процессов как в протоплазме, так и в клеточных стенках растений. Последняя точка зрения была признана рядом исследователей, которые указанными выше переходами объясняли наблюдаемые изменения в составе клеточных стенок в процессе их развития. Так, на основе приведенных выше схем объяснялось относительное увеличение содержания в клеточных стенках растений пентозанов, высказывалось предположение о существований в макромолекулах целлюлозы дефектных звеньев, состоявших из остатков глюкуроновой кислоты и пентоз. Эта точка зрения в настоящее время считается неправильной, и объясняется этот вывод различным строением макромолекул полисахаридов, входящих в состав гемицеллюлоз. Эти различия в основном сводятся к следующему  [c.331]

    Препараты ЛМР считают наиболее пригодными для исследования строения лигнина и моделирования его химических реакций, однако и эти препараты не идентичны с природным лигнином, и, кроме того, их нельзя считать представительными для всего лигнина клеточной стенки. Размол древесины увеличивает доступность лигнина и вызывает его механическую деструкцию. При механической деструкции происходят реакции гомолитического расщепления связей лигнина с гемицеллюлозами и связей С-О-С и С-С в сетке лигнина с возникновением промежуточных свободных радикалов, которые вступают в реакции рекомбинации и инициируют реакции полимеризации и окисления кислородом воздуха. Поэтому ЛМР, хотя и близок к природному лигнину, все же химически изменен. Первоначальную методику Бьеркмана в дальнейшем неоднократно модифицировали. [c.371]

    Ранее мы рассмотрели способы, при помощи которых белковые субъединицы могут соединяться друг с другом, образуя замкнутые олигомеры и длинные опирали. Другой чрезвычайно важный способ упаковки белков и липидов приводит к образованию пластинчатых структур, или мембран [1—10], которые с молекулярной точки зрения можно рассматривать как практически безграничные двумерные поверхности. Эта глава посвящена строению, химическим свойствам и функциям биологических мембран, а также клеточных стенок бактерий, грибов и растений. [c.337]

    РИС. 5-12. Предполагаемое строение стенки растительных клеток. Относительные размеры различных компонентов стенки не соблюдены, однако соотношения между ними близки к истинным. Расстояние между пучками целлюлозных волокон увеличено, чтобы можно было изобразить соединяющие структуры В первичной клеточной стенке одной клетки может находиться от 10 до 100 пучков целлюлозных волокон [115] [c.396]

    Содержимое всех живых клеток отделено от окружающей среды специальными структурами - биомембранами, которые обычно называют прото-плазматическими мембранами. У растений и бактерий наряду с такими мембранами снаружи клетки еще имеется клеточная стенка. Для эукариотических клеток характерно деление внутреннего содержимого клетки на отдельные отсеки, или компартменты. Они представляют собой субклеточные органеллы, ограниченные мембранами, например, ядро митохондрии, аппарат Гольджи. Однако мембраны служат не только поверхностями раздела. По существу, мембраны представляют собой сложные по строению и разнообразные по функциям биохимические системы. [c.106]

    В учебнике в достаточно компактной четкой форме излагается на современном уровне обширный по тематике материал. Особое внимание уделено строению макромолекул и физической структуре полимеров как основе для понимания структуры и свойств синтетических полимеров и высокомолекулярных компонентов древесины. Рассмотрены процессы синтеза полимеров, в том числе биосинтеза природных полимеров. Детально излагаются свойства синтетических полимеров, используемых при получении разнообразных материалов и изделий на основе древесины и продуктов ее переработки. Учебник содержит необходимые сведения по анатомии древесины и строению клеточной стенки. Значительное место отводится изложению теоретических основ процессов химической переработки древесины и ее компонентов. [c.2]

    Слои вторичной стенки хорошо различимы на микрофотографиях, полученных в поляризованном свете, благодаря различной ориентации в разных слоях микрофибрилл целлюлозы (см. 8.6.2), обладающей вследствие кристаллической структуры двойным лучепреломлением. Слои 8 , 82 и 8з(Т) существенно различаются по толщине 8 и 8з(Т) тонкие, а 8а толстый и образует основную массу клеточной стенки. Во всех этих слоях уже преобладает целлюлоза. Слой 81 имеет толщину 0,1...0,3 мкм в зависимости от части годичного кольца (поздняя или ранняя) и древесной породы. Толщина слоя 82 составляет в среднем 2...6 мкм с колебаниями от 1 мкм (в ранней древесине) до 7...9 мкм (в поздней древесине). Слой 8з(Т) самый тонкий (0,1.. .0,2 мкм) строение его в значительной степени зависит от древесной породы. [c.216]


    Полисахариды. В растениях полисахариды участвуют в образовании клеточной стенки (структурные полисахариды) и, кроме того, используются для создания запаса связанного углерода и энергии (резервные полисахариды). Структурные полисахариды формируют срединную пластинку, первичную и вторичные стенки, различающиеся функциональным назначением, строением и составом. Клеточная стенка является природным полимерным композиционным материалом, в котором полимерная дисперсная фаза - микрофибриллы распределена в полимерной дисперсионной среде - углеводной матрице (матриксе). Следовательно, при биосинтезе полисахаридов должна одновременно закладываться и структура клеточной стенки. [c.334]

    Строение клеточных стенок волокон либриформа и волокнистых трахеид в древесине лиственных пород примерно такое же, как у трахеид поздней древесины хвойных. Распределение слоев по массе приблизительно следующее у волокон либриформа Р 81 82 83 = 1 10 87 2 у волокнистых трахеид 5 16 67 12. По строению клеточных стенок паренхимные клетки и сосуды отличаются от трахеид и волокон либриформа. У сосудов также существуют первичная Р и вторичная 8 (81 + 82 + 83) [c.216]

    Гетерогенные процессы у полисахаридов отличаются от гетерогенных реакций НМС. На характер гетерогенных процессов у полисахаридов, как и других полимеров, влияет их надмолекулярная структура, а у полисахаридов в древесине также ультраструктура клеточной стенки и анатомическое строение древесины. Все эти детали структуры определяют доступность полисахарида для химического реагента. Результаты гетерогенного процесса будут зависеть поэтому не только от скорости самой химической реакции, но и от скорости диффузии реагента в глубь клеточной стенки древесины или в глубь волокна технической целлюлозы. Класси- [c.281]

    Все рассмотренные закономерности гидролитической деструкции относятся к влиянию на скорость гидролиза различий в химическом строении полисахаридов. При гидролизе полисахаридов непосредственно в древесине решающее влияние на начальных стадиях гидролиза оказывает доступность полисахаридов, зависящая от ультраструктуры клеточной стенки и, главным образом, от надмолекулярной структуры полисахаридов. [c.290]

    Между гелифицированными и фюзенизованными микрокомпонентами нельзя провести резкой границы. Фюзенизация может происходить на начальной стадии изменения растительных тканей или после того, как уже начался процесс гели-фикации. В первом случае получается типичный фюзен, в котором ткани полностью сохраняют клеточное строение. Часто клеточная структура фюзена может быть нарушена из-за разрыва клеточных стенок. [c.74]

    Стенка клетки имеет слоистое строение (рис. 71). На поверхности ее расположен липоидный слой с выступами и бугорками, под ним — липополисахарндный слой, ниже неплотно упакованные молекулы белка и прилегающий к цитоплазматической мембране плотный гликопептидный слой. Вся масса пронизана каналами, поэтому клеточная стенка проницаема для солей и других многочисленных молекулярных соединений. Вотличие от нее цито- [c.247]

    К настоящему времени многие О-гликозид-гидролазы получены в высокоочищенном и в кристаллическом состоянии, для целого ряда карбогидраз получены данные о первичной структуре (всей белковой молекулы или ее фрагментов). Именно среди кар-богидраз был выбран фермент — лизоцим, для которого впервые в энзимологии было расшифровано пространственное строение с помощью рентгеноструктурных методов анализа. Карбогидразы широко используются для изучения структуры многих биологически важных соединений — гликоконьюгатов, компонентов клеточной стенки и т. д. [c.22]

    Строение клетки определяется теми веществами, из которых образованы стенки (мембраны) клетки, представляющие ее каркас, и веществами, содержащимися внутри клеток. Углевод целлюлоза — важнейшая составная часть клеточных стенок растений. В организмах животных основными структурообразующими материалами являются белки. Кроме того, внутриклеточные вещества состоят в значительной мере из белков. Так, красная клетка крови граничена тонкой мембраной, внут- [c.383]

    Инфицирование клетки Е. соИ бактериофагом происходит следующим путем фаг впрыскивает свою ДНК через клеточную стенку в цитоплазму. Приблизительно через 20 мин после этого клетка лопается, и из нее выходит около 100 полностью готовых копий исходной вирусной частицы. Такая высокая скорость размножения позволяет проводить в пробирке в течение 20 мин генетические эксперименты, для которых потребовалось бы все население земного шара, если бы эти опыты проводились на людях. Главные принципы, лежащие в основе этого метода, были ясно изложены Бензером [130], который впервые составил карту тонкого строения гена. Частицы бактериофагов, подобно бактериям, можно посеять в чашке с агаром. Отличие заключается лишь в том, что агар должен содержать однородную суспензию бактерий, чувствительных к вирусу. В какой бы участок чашки ни попали вирусные частицы, они заражают какую-либо бактерию. Вокоре инфекция распространяется на соседние бактерии и в результате образуется стерильное пятно (рис. 15-20). Число основных вирусных частиц, содержащихся в суспензии, можно легко определить, сосчитав число стерильных пятен, образовавшихся в результате посева. [c.248]

    Т.к. клеточных стенок (их содержание может достигать 75% от сухой массы этих стенок) ковалентно связаны с пептидогликанами, причем область связывания представляет собой олигомерное звено, содержап(ее аминосахара и глицерофосфат, но отличающееся по строению от повторяющихся звеньев Т.к. Как правило, ближайшим к пепти-догликану является остаток глюкозамина атом С-1 этого моносахарида связан фосфодиэфирной связью с атомом С-6 остатка мурамовой к-ты пептидогликана, а с др. стороны звена (ближайшей к Т.к.) остаток глицерофосфата фосфодиэфирной связью соединен с остатком полиола Т. к. [c.509]

    Толстая стенка растительной клетки (рис. 1-3) устроена необычайно сложно [ИЗ—116]. Благодаря ее сложному строению растения обладают прочностью и жесткостью, а их клетки способны к быстрому удлинению в период роста. Норткот [ИЗ] сравнил строение стенки растений с фибраглассом — пластиком, армированным стекловолокном. Так, в стенке клетки находятся микрофибриллы, состоящие из целлюлозы и других полисахаридов, которые погружены в матрикс, также состоящий в основном из полисахаридов. На ранних стадиях роста зеленых растений закладывается первичная клеточная стенка, содержащая свободно переплетенные целлюлозные волокна диаметром приблизительно 10 нм, центральная часть которых (- 4 нм) имеет кристаллическую структуру. Такие целлюлозные волокна содержат 8000—12 000 остатков глюкозы. [c.395]

    Клеточная стенка анатомических элементов древесины, волокон технической целлюлозы и других волокнистых полуфабрикатов имеет сложное строение, связанное с распределением в клеточной стенке высокомолекулярных химических компонентов. Для изучения этих вопросов применяют, кроме световой, микроскопию в ультрафиолетовом и поляризованном свете, а также флюоресцентную микроскопию. Для исследования тонкого строения клеточной стенки - ультраструктуры (субмикроструктуры) используют главным образом электронную микроскопию (см. 5.4) с применением просвечивающих (ПЭМ) и растровых, или сканирующих, электронных микроскопов (РЭМ). Эти исследования имеют важное значение для понимания изменений, происходящих с анатомическими элементами древесины и другого растительного сырья, а также в клеточной стенке в процессах делигнификации и других процессах химической и химико-механической переработки древесины. [c.214]

    Целлюлоза - наиболее распространенный в природе полисахарид. Кроме древесины, в большом количестве она содержится в семенных волосках хлопка (96...99%), в лубяных волокнах таких текстильных растений, как лен, рами (80...90%), соломе злаков и др. Свойства целлюлозы -физические, физико-химические и химические зависят как от химического строения целлюлозы, так и от ее физической структуры - формы макромолекул, межмолекулярного взаимодействия, надмолекулярной структурь[ и фазового и релаксационного (физического) состояний. Целлюлоза, будучи основным компонентом клеточных стенок, во многом определяет строение и свойства древесины. [c.225]

    На сорбцию паров воды древесиной алияют химическое строение компонентов древесины, их надмолекулярная структура, а также ультраструктура клеточных стенок и анатомическое строение древесных тканей. Выделенные из древесины компоненты по сорбционной способности могут значительно отличаться от компонентов в древесине в зависимости от метода выделения. Выделенная из древесины целлюлоза набухает в воде в большей степени, чем сама древесина. [c.265]

    Эти необычные полимеры, содержащие остатки фосфорной кислоты, составляют до 50 % сухой массы клеточных стенок некоторых грамположительных бактерий. Они являются также мембранными и внутриклеточными компонентами бактерий. Тейхоевые кислоты прочно закреплены в клеточной стенке, и для их экстракции необходим такой реагент, как трнхлоруксусная кислота. Их распространению, строению и свойствам посвящен обзор [136]. Известны тейхоевые кислоты двух типов, один из которых содержит цепи из остатков D-глицерина, связанных фосфодиэфирными связями второй тип вместо D-глицерина содержит D-рибит. Рибит-тейхоевые кислоты содержат углеводные остатки, присоединенные гликозидной связью в глицеринтейхоевых кислотах углеводные остатки имеются лишь в некоторых случаях. [c.251]

    В углеводной части древесины главным образом содержатся полисахариды различного строения и в небольшом количестве полиурониды. В зависимости от растворимости и функций в древесине полисахариды (основную часть) относят к структурным (структурообразующим) компонентам, участвующим в построении клеточной стенки, или же к экстрактивным веществам (водорастворимые полисахариды и полиурониды). Четкое разделение на такие две части провести, однако, невозможно. Структурные полисахариды, не извлекаемые из древесины нейтральными растворителями и в том числе водой, объединяют общим понятием холоцеллюлоза. [c.268]

    В древесине гемицеллюлозы, водорастворимые полисахариды и полиурониды выполняют различные функции. Гемицеллюлозы являются структурными компонентами клеточной стенки, тогда как водорастворимые полисахариды - резервными питательными веществами. Однако следует подчеркнуть, что четкое отнесение того или иного индивидуального полисахарида к одной из этих двух фупп часто становится затруднительным, поскольку в древесине присутствуют некоторые нецеллюлозные полисахариды, относящиеся по химическому строению (по главному составляющему моносахариду) к одному и тому же типу, но отличающиеся по функции и растворимости. [c.269]

    При действии концентрированных кислот на измельченную древесину кислота проникает в полости клеток, а затем в клеточные стенки и вызывает набухание древесины. Далее начинается растворение полисахаридов. В первую очередь растворяются и гидролизуются гемицеллюлозы, а затем уже целлюлоза с целлюлозанами. На скорость процесса гидролитической деструкции оказывает влияние не только надмолекулярная структура полисахаридов, но и строение клеточной стенки и древесной ткани в целом. [c.294]

    Строение клеточной стенки Staphylo o us aureus схематически изображено на рис. 23.5.1. Здесь X и Y представляют остатки N-ацетилглюкозамина и N-ацетилмурамовой кислоты соответственно. Пустыми кружками обозначены аминокислоты, которых в возникающих пептидогликанах содержится пять. Однако когда [c.339]

    Вароссио и Бреджер [140] анализировали образцы ели, сосны и березовой пихты, взятые из свай, балок и половиц строений, имевших возраст 75—600 лет. Древесина, которая была утоплена или погружена в грунт, имела пониженное содержание целлюлозы при явном увеличении содержания лигнина. Это показывало, что лигнин является наиболее устойчивым компонентом органического вещества клеточной стенки. Однако в наиболее старых образцах лигнин был частично разложен. [c.672]

    Когда срезы предварительно обрабатывали солью цианистоводородной кислоты, реакция пероксидазы не происходила. Прибавление перекиси водорода к ткани не приводило к образованию лигниноподобных материалов. Это показывало, что неспособность тяговой древесины к лигнификации может вызываться различным строением предшественников лигнина на обеих сторонах стебля. Изменение клеточного метаболизма, ведущее к образованию высококристаллической целлюлозы в клеточной стенке, может не дать мест, с которыми лигнин мог бы образовать связь. По-видимому в лигнифицированных клетках лигнин ассоциирован с нецеллюлозной фракцией клеточной стенки. [c.768]


Смотреть страницы где упоминается термин Клеточные стенки строение: [c.143]    [c.144]    [c.201]    [c.82]    [c.469]    [c.63]    [c.329]    [c.6]    [c.217]    [c.266]   
Физиология растений (1989) -- [ c.25 , c.26 ]




ПОИСК





Смотрите так же термины и статьи:

Стевны

Стейси



© 2025 chem21.info Реклама на сайте