Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Онзагера постулаты

    Все другие формулировки термодинамики необратимых процессов могут быть получены из постулатов Онзагера. Поэтому целесообразно рассмотреть обоснование этих постулатов. [c.419]

    Попытки кинетического обобщения термодинамики делались с начала XX в. Начиная с работ Онзагера (1931 г.) можно уже говорить о систематическом построении новой термодинамики необратимых процессов, интенсивно развиваемой в настоящее время. Основными постулатами этой теории, применимыми лишь к небольшим отклонениям от равновесия, являются 1) утверждение о линейной зависимости обобщенных термодинамических потоков от обобщенных потенциалов 2) соотношение Онзагера, выражающее равенство перекрестных коэффициентов этой зависимости 3) теорема Пригожина о минимальности производства энтропии. [c.36]


    Мы детально рассмотрим наиболее общую формулировку аксиом термодинамики необратимых процессов, принадлежащую Онзагеру. Из нее можно вывести остальные две формулировки. Онзагер принял три постулата. Первый постулат позволяет описать потоки. В рассматривавшемся выше примере падающих шариКОВ их поток ] (число шариков, пересекающих единицу поверхности в единицу времени) определяется уравнением У = Су, где С — концентрация шариков, а у — скорость их движения. [c.414]

    Вторым постулатом Онзагера (также аксиоматическим) является так называемое соотношение взаимности L/ , = L ,. Оно описывает симметрию влияния термодинамических сил на чужие потоки. Если градиент свойства i (сила действует на поток свойства к, то точно так же (на единицу силы) действует градиент свойства к на поток свойства i. [c.415]

    Вторым постулатом Онзагера (также аксиоматическим) [c.534]

    В заключение еще раз подчеркнем, как уже отмечалось в данной главе, что в сложных энерготехнологических процессах вопросы математического моделирования тепломассопереноса тесно связаны с рассмотрением физико-химических процессов. В последнее время при рассмотрении физико-химических процессов и анализе динамического поведения сложных нелинейных систем все большее внимание уделяется вопросам неравновесной термодинамики [5.35]. При этом большой интерес при моделировании физико-химических процессов, также как и для процессов тепломассопереноса, представляет отмеченный в данной главе обобщенный термодинамический подход, базирующийся на постулатах Л.Онзагера. Например, в соответствии с [5.36] применительно к физико-химическим превращениям, при описании скоростей реакций обобщенными движущими силами в стационарном неравновесном состоянии могут быть как химические сродства, так и фадиенты различных потенциалов в соответствующих потенциальных полях. [c.427]

    Распространяя это уравнение на любые термодинамические силы и учитывая, что общий рост энтропии определяется суммой роста, обусловленного отдельными силами, получим третий постулат Онзагера  [c.415]

    После того как Онзагер получил соотношения взаимности механико-статистическим путем, предпринималось немало попыток отыскать чисто феноменологический путь их вывода [36—40]. Однако, несмотря на некоторые успехи, достигнутые в этом направлении (так, в работе [38] строго феноменологически показана справедливость этих соотношений для химических реакций), проблема в целом до сих пор остается нерешенной. Поэтому в рамках феноменологической термодинамики их следует пока рассматривать как еще один экспериментально подтвержденный закон (постулат), который вместе с феноменологическими законами (1.28.5) образует основу теории явлений переноса, [c.84]


    Межиоваое притяжение ионная атмосфера. Нойес, Сезер-ленд, Бьеррум, Мильнер и др. указывали на возможность того, что силы межионного притяжения могут оказывать влияние на электропроводность электролитов, особенно в случае сильных электролитов. Однако современная количественная разработка этой теории связана преимущественно с работами Дебая и Гюккеля, а ее дальнейшее развитие осуществлено в основном Онзагером и Фалькенгагеном [1] . Основной постулат теории [c.127]

    Читателям предоставляется возможность прорабатывать книгу в трех различных концентрах. Для общего знакомства с термодинамикой необратимых процессов вместе с двумя простыми примерами рекомендуется проработать в первом концентре 2, 9 и 57. Второй концентр предназначается для тех, кого не интересует статистическое обоснование теории и кто принимает теорему Онзагера как постулат (так же, как это делается с основными законами термодинамики). Они могут пропустить разделы, касающиеся статистической теории, и параграфы более специального характера, которые отмечены звездочками. Третий концентр включает весь текст монографии. [c.14]

    С позиций основного постулата термодинамики необратимых процессов о разделении приращения энтропии открытой системы на две независимые части удалось объяснить общие закономерности изменения энтропии в биологических системах. Было показано, что в стационарном состоянии скорость производства энтропии в ходе внутренних необратимых процессов в открытых системах достигает минимального положительного значения (теорема Пригожина). Эти результаты, однако, справедливы только вблизи равновесия в области линейной термодинамики . Именно здесь выполняются линейные соотношения между скоростями и движущими силами процессов, а также соотношения взаимности Онзагера. [c.5]

    I. Вид уравнений Фика показывает, что поток диффузии направлен в сторону меньшей концентрации. Это справедливо, если диффузия идет в двухкомпонентной системе, состоящей, например, нз соли в воде или иода в бензоле. Однако в трехкомпонентной системе, например, вода — бензол — иод, диффузия иода направлена в сторону большей концентрации. В термодинамической теории необратимых процессов такая возможность вытекает из выражения обобщенной движущей силы диффузии через градиент химического потенциала. Из постулатов Онзагера (которых мы здесь разбирать не будем) следует, что перенос в этом и подобных случаях определяется несколькими коэффициентами диффузии, которые могут быть положительными и отрицательными. [c.181]

    Это означает, что поток данного свойства опреде.лястся не только градиентом самого этого свойства, но градиентами других, чужих свойств. Учитывая наблюдаемое на опыте влияние разных потоков друг на друга, Онзагер в качестве второго постулата ввел соотношение взаимности Lik = Lhi. Если сила Xk, определяемая градиентом к, действует на поток свойства i, то точно так же градиент свойства I действует ка поток свойства к. Термодинамические силы X целесообразно связать с какой-либо термодинамической функцией, определяющей направление процессов. Внутри систем энтропия возникает — генерируется благодаря протеканию необратимых процессов. Скорость ее возрастания в единице объема S характеризует необратимость процесса. Рассмотрим падение шариков в вязкой жидкости. При достижении стационарного состояния скорость их падения v постоянна. Еслн число шариков в единице объема равно С, то их поток, т. е. общее их число, пересекающее единицу горизонтальной поверхности за единицу времени, составляет I= v, а сила тяжести совершает при этом работу vX или IX. Вследствие трения эта работа превращается в тепло. Скорость выделения тепла q = dqldt согласно уравнениям, вытекающим пз второго закона термодинамики, определяется уравнением q = TS, где S = rfS/d< — скорость роста энтропии. Отсюда следует, что Г5 = = Х. Это уравнение распространяют и на другие силы. С учетом того, что общее увеличение энтропии равно сумме приростов энтро-ппи, обусловлеи1П>1х отдельными силами, получим  [c.293]


Физическая химия (1987) -- [ c.534 , c.537 ]




ПОИСК





Смотрите так же термины и статьи:

Онзагер



© 2024 chem21.info Реклама на сайте