Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Превращения физико-химические

    Механизм образования сажи (дисперсного углерода) при горении реактивного топлива и в общем случае при химических превращениях углеродсодержащих веществ изучен еще недостаточно. Исследователи основную роль отводят полимеризации или цепным разветвленным реакциям. В последнем случае физико-химическая модель процесса включает разветвленные цепные реакции образования радикалов-зародышей, превращение их в зародыши твердой фазы (минимальные частицы, имеющие физическую поверхность) и дальнейший рост зародышей за счет гетерогенного разложения углеводородов на их поверхности. Сторонники полимеризационной схемы отмечают, что образование ацетилена наблюдается даже в метано Кисло-родном пламени. После достижения максимальной концентрации ацетилен превращается в моно- и полициклические ароматические углеводороды и полиацетилен. Экспериментально показано также, что в соответствующих условиях появлению сажевых частиц предшествует образование (в результате полимеризации) крупных углеводородных молекул с молекулярной массой примерно 500. [c.168]


    В ходе химико-технологических процессов химическому превращению подвергаются разнообразные вещества, обладающие различными физико-химическими свойствами. Разнообразна и сама природа химического взаимодействия. Естественно, что этому многообразию соответствует многообразие химических реакторов. Однако в научной литературе практически отсутствует сколько-нибудь приемлемая классификация химических реакторов, еслп иметь в виду не конструктивные особенности аппаратов, а внутреннюю сущность процессов, характеризуемую определенным сочетанием физических и химических явлений. [c.9]

    Наиболее трудной и многоплановой оказалась проблема рационального применения топлив и масел в двигателях внутреннего сгорания, что связано со сложностью протекающих в двигателях процессов физико-химических превращений топлив и масел. Объективно появилось в сущности новое направление в науке и технике — теория и практика рационального применения топлив, масел, смазок и специальных жидкостей. В начале 60-х годов по предложению советского ученого К. К. Папок и инженера В. В. Никитина это направление было решено назвать химмотологией — производным от слов химия , мотор и логия (наука) [7]. [c.6]

    Теперь можно сформулировать задачу синтеза вероятных механизмов протекания сложной химической реакции. Пусть известны априори исходные реактанты и конечные продукты заданной химической реакции. Пусть известны также типы промежуточных элементарных реакций, т. е. предполагается заданным класс промежуточных элементарных реакций. Допускаем при этом, что не все реакции из этого класса могут в действительности протекать в рассматриваемой реакционной системе. Полагаем далее, что сформулированы и совокупности эвристик, позволяющие установить запреты на превращение одного тина АМ в другой. Необходимо осуществить синтез многостадийных механизмов протекания сложной химической реакции и выбрать из них для последующей экспериментальной проверки те, которые не противоречат физико-химическому смыслу задачи. [c.177]

    Химическая технология интегрирует в себе учения о химических превращениях, физико-химических свойствах и явлениях, физических явлениях переноса, сведения из математики, механики, экономики и других наук и вырабатывает знания о взаимодействии отдельных явлений. Д.И. Менделеев говорил Учение о способах... освещает научным началом то, что вырабатывается практикой, и через это не только усовершенствуется производство, но и расширяется область научного понимания вещей и явлений , поэтому химик-технолог должен быть эрудирован во многих научных областях. [c.8]


    Применение катализаторов, включающих оксиды металлов переменной валентности, для окислительной конверсии нефтяных остатков является весьма перспективной областью. Использование данных катализаторов характеризуется рядом особенностей и закономерностей, касающихся химизма и механизма превращений углеводородов сырья, физико-химических свойств получаемых продуктов, характера и количества коксовых отложений. Б связи с этим исследование превращений ТНС на катализаторах оксидного типа в процессе ОКК представляет чисто научный интерес, а также может иметь большое практическое значение для нефтепереработки и нефтехимии. [c.5]

    Химическая технология интегрирует в себе знания о химических превращениях, физико-химических свойствах и явлениях, физических явлениях переноса, сведения из математики, механики, экономики и других наук и вырабатывает знания о взаимодействии отдельных явлений. Как видно, химик-технолог должен быть эрудирован во многих научных областях. Учение [c.10]

    Выполнение первого этапа возможно только после изучения химических превращений, физико-химических свойств различных смесей, образующихся на разных этапах, и выявления всех ограничений. [c.58]

    Аналитический метод построения математической модели состоит в аналитическом описании объекта управления системой уравнений, полученных в результате теоретического анализа физико-химических явлений ка основе законов сохранения энергии и вещества, В этом случав математическая модель содержит уравнения материального и энергетического (теплового) балансов, термодинамического равновесия системы и скоростей протекания отдельных процессов, например, химических превращений, массопередачи, теплопередачи и т,д. [c.12]

    При анализе физико-химических процессов в объекте (химического превращения, диффузии, теплопередачи и др.) необходимо выделить главные или лимитирующие явления. [c.13]

    Химические изменения всегда сопровождаются изменениями физическими. Поэтому химия тесно связана с физикой. Химия также связана и с биологией, поскольку биологические процессы сопровождаются непрерывными химическими превращениями. Однако химические явления не сводятся к физическим процессам, а биологические — к химическим и физическим каждая форма движения материи имеет свои особенности. [c.15]

    В первой (кинетической) стадии горения, включающей пред-пламенное окисление и появление очагов воспламенения, скорости химических реакций, которые значительно меньше скоростей диффузии реагирующих компонентов, определяют скорость процесса в целом. В этой стадии скорость и характер превращения ТВС определяются ее физико-химическими свойствами, т. е. в основном зависят от фракционного и углеводородного состава топлива, от наличия в нем присадок, активирующих горение. [c.148]

    Современные физико-химические исследования в любой конкретной области характеризуются применением разнообразных экспериментальных и теоретических методов для изучения различных свойств веществ и выяснения их связи со строением молекул. Вся совокупность данных н указанные выше теоретические методы используются для достижения основной цели—выяснения зависимости направления, скорости и пределов протекания химических превращений от внешних условий и от строения молекул—участников химических реакций. [c.21]

    При создании химической концепции за основу берутся главным образом литературные данные и записываются уравнения физико-химических превращений с указанием ориентировочных значений параметров (температур, давлений и т. д.). [c.51]

    Во многих случаях рекомендации, основанные на различных технологических принципах, подсказывают направления технических способов проведения процесса, противоречивые с физико-химической точки зрения. Они могут привести также к решениям, которые не будут наиболее эффективными. Например, всегда нужно использовать максимально развитую поверхность контакта двух реагирующих фаз. Скорость превращения пропорциональна величине этой поверхности, и мы стремимся к возможно более быстрому проведению процессов. Однако в случае значительного теплового эффекта реакции сильно развитая поверхность контакта может привести к излишнему перегреву системы и работе при тем-. пературах, положение равновесия при которых не будет выгодным. Аналогично, применение теплового противотока может невыгодно влиять на равновесие реакции, качество получаемого продукта или стойкость конструкционных материалов оборудования. Поэтому противоток используют только тогда, когда он обеспечивает наиболее эффективный теплообмен. [c.346]

    Образцы нагревали со скоростью 10°С/мин в интервале температур 20—1000°С. В первой серии навески образцов составляли 1000, 1330 и 1400 мг, во второй — 100 мг. В каждом эксперимепте одновременно записывали следующие параметры изменение температуры образца — кривая Г изменение массы навески — кривая ТГ] изменение скорости изменения массы — дифференциальная кривая ДТГ и характеристика тепловых эффектов процессов физико-химических превращений, происходящих в образцах — дифференциальная кривая ДТА. Результаты первой серии представлены на рис. 13. [c.24]


    Электрическая энергия, вырабатываемая элементом (или цепью элементов), равна полезной работе А суммарного процесса, протекающего в элементе, который мы рассматриваем как термодинамическую систему. Полезная работа Л, процесса максимальна н равна убыли изобарного потенциала системы —AG. Это изменение изобарного потенциала вызвано совокупностью электрохимических реакций на электродах, т. е. суммарной химической реакцией или другими физико-химическими процессами (растворение, выравнивание концентраций, фазовое превращение и др.), протекающими обратимо. В том случае, когда процесс является обратимым, можно, заставляя элемент работать при почти полной компенсации его э.д.с. внешней разностью потенциалов, т. е. заставляя его находиться бесконечно близко к равновесию (этому состоянию и соответствует измеренная величина ), вычислить изменение изобарного потенциала системы AG через измеренную э.д.с..  [c.527]

    Основные каталитические процессы в нефтехимической и химической промышленности характеризуются многостадийностью собственно химических превращений при значительном числе участвующих в них реактантов. Последнее является причиной многомерности и сложности математических моделей, в которые входят большое количество уравнений, в первую очередь материального и теплового балансов. Практическое использование подобных моделей затруднительно, ибо для получения на ЭВМ полей концентраций реагентов и температуры в реакторе требуются большие затраты машинного времени. Это приводит во многих практических ситуациях к чрезмерному усложнению процедур структурной и параметрической идентификации и к невозможности научно обоснованного выбора математической модели каталитического процесса, отражающей результаты промышленного эксперимента в широком диапазоне изменения технологических параметров. Эффективный путь преодоления этих трудностей состоит в сокращении размерности уравнений модели за счет априори построенных уравнений инвариантов физико-химических (реакторных) систем. Инварианты позволяют также осуществить предварительную оценку параметров реакторных моделей, проверить обоснованность выбора граничных условий. [c.242]

    Для большинства физико-химических расчетов необходимо знать теплоемкости веш,еств, участвуюш,их в процессе, тепловые эффекты процессов растворения, фазовых превращений и химических реакций. Измерение этих величин может быть произведено при помощи различных экспериментальных методов. При температурах, близких к комнатной (20—50 ), широко применяется калориметрический метод. [c.129]

    Машины и аппараты химических производств в представленном учебном пособии рассматриваются как объекты, в примерах технологических расчетов которых раскрывается взаимосвязь протекающих в них физико-химических процессов. Аналогичные вопросы рассматриваются в известной книге К. Ф. Павлова, П. Г. Романкова и А. А. Носкова Примеры и задачи по курсу процессов и аппаратов химической технологии . Однако в современной системе подготовки инженеров-механиков для химической промышленности курс Процессы и аппараты химической технологии , эволюционируя, постепенно преобразуется в инженерно-физическую дисциплину, охватывающую специализированные разделы гидромеханики, теплофизики и массопереноса. Сейчас его основная задача заключается в ознакомлении студентов с теорией отдельных явлений переноса (в их инженерном приложении), что, естественно, отодвинуло на задний план изучение непосредственно химической аппаратуры. Восполнение этого пробела взял на себя курс Машины и аппараты химических производств , являющийся специальной дисциплиной на завершающей стадии подготовки инженеров-механиков. Но основная его задача — показать студентам на наглядных примерах возможность использования и обобщения всех инженерных знаний, которые они получили в процессе обучения. Отсюда вытекает и методическая целенаправленность пособия — привить студентам и молодым специалистам навыки комплексного использования закономерностей гидромеханики, тепло-массообмена и макрокинетики химических превращений в расчетах химического оборудования. [c.3]

    Современное состояние теоретических основ такого подхода позволяет уже в настоящее время создавать эффективные алгоритмы по идентификации структур молекул по физико-химическим данным и по синтезу теоретически непротиворечивых конкурирующих механизмов реакций. В основе программ построения механизмов реакций лежат теории строения и реакционноспособности химических соединений, позволяющие по предварительно составленной библиотеке химических реакций из заданной совокупности реактантов получать другие реакции с помощью различных химических превращений. Априори выбранная система эвристик, характеризующая теоретически разумные пути химических пре- [c.173]

    К физико-химическим превращениям материалов, проводимым в печах, относятся а) изменение агрегатного состояния вещества и б) изменение кристаллической структуры вещества. [c.7]

    Химическая технология — прикладная наука о наиболее экономичных процессах (проводимых с участием физико-химических превращений) производства необходимых человечеству продуктов, предметов и трёбуемых видов энергии. В противоположность химику, который может синтезировать, в лабораторных условиях нужный продукт в небольшом, количестве и часто весьма дорогостоящим способом, технолог ставит своей задачей производство этого продукта в промышленном масштабе при возможно более низких экономических затратах. Эти две особенности химической технологии — большой Масштаб производства и выбор экономичных методов и способов переработки — обусловливают различие в деятельности химика-технолога и химика-исследователя. [c.7]

    Новейшим проявлением физико-химического подхода к катализу, значительный вклад в который был внесен Ленгмюром и его последователями, является так называемая электронная теория катализа. Бу-душ,ие успехи теории катализа могут быть достигнуты, вероятно, только путем согласования химического и физического подходов в этом отношении область каталитических превращений углеводородов представляет собой прекрасный объект для проверки теоретических представлений. Некоторого упорядочения в теории катализа удалось достигнуть благодаря подразделению катализаторов и реакций на два класса, и в известных пределах уже сейчас могут быть сделаны качественные предсказания. [c.8]

    Термотехнологические процессы, протекающие в печах, состоят из а) химических превращений исходных материалов, состоящих в изменении химического состава и б) физико-химических превращений исходных материалов, в которых происходит изменение структуры веществ, отражающиеся на агрегатном состоянии или кристаллической модификации их. [c.6]

    Рабочие температуры для проведения физико-химических превращений материалов определяются из диаграмм состояния их или устанавливаются, исходя из экспериментальных данных. [c.12]

    Проведение целенаправленных физических превращений исходных материалов в печах является способом получения целевых продуктов с заданным химическим составом и физико-химическими свойствами за счет теплового воздействия без химического взаимодействия. Этот вид термотехнологических процессов предусматривает только осуществление физических процессов и превращений исходных материалов и полученных продуктов (тепловая активация, термообработка, плавление, испарение, конденсация, рафинирование металлов, выращивание кристаллов и др.). [c.16]

    Остановимся теперь на связанных состояниях электронов в растворах. Электроны в таких состояниях называют сольватж-рованными электронами, в отличие от делокализованных электронов, называемых обычно сухими или квазисвободными. Связанные состояния были обнаружены впервые более ста лет назад в металл-аммиачных растворах. В случае водных растворов электролитов такие электронные состояния играют, согласно существующим представлениям, важнейшую роль в кинетике радиационно-химических превращений. Физико-химические свойства и реакционная способность сольватированных электронов подробно рассмотрены в ряде обзоров [29—33, 36]. [c.16]

    Во второй половине XVIII столетия изучением веществ и их превращений физико-химическими методами исследования за- имались многие русские химики Т. Е. Ловиц, Я- Д. Захаров, В. М. Севергин, А. Мусин-Пушкин, В. В. Петров, а также иностранные ученые Р. Реомюр, И. Рихтер, К. Венцель, Г. Берг- ман, К. Шееле, Д. Пристли, Г. Кавендиш, А. Лавуазье и др. [c.22]

    Как уже отмечалось (см. гл. 16), электродные процессы часто связаны с фазовыми превращенпями. В результате появления или исчезновения фаз резко меняются многие важные физико-химические свойства электрохимической системы — электродные потенциалы, электрическое сопротивлсзние и т. д. Эти изменения свойств в ходе фазовых превращений используются в интеграторах, элементах памяти — мемистерах и других хемотронах. Принцип действия интегратора дискретного действия, основанного на электродных фазоЕ.ых превращениях, состоит в том, что металл, предварительно осажденный на одном из электродов, переносят на другой электрод. Реакция в хемотроне сводится к перемещению металла М с электрода I на электрод И  [c.385]

    В соответствии с современными физико — химическими пред — стазлениями о сущности катализа, катализатор и реагирующие веп(ества следует рассматривать как единую каталитическую реакционную систему, в которой химические превращения испытывают не только реактанты под действием катализатора, но и катализатор при взаимодействии с реагентами. В результате такого взаимного воздействия в реакционной системе устанавливается стационарный состав поверхности катализатора, определяющий его каталитическую активность. Отсюда следует, что катализатор — не просто место осуществления реакции, а непосредственный участник химического взаимодействия, и его каталитическая активность обусловливается химической природой катализатора и его химическим сродством к реактантам. [c.87]

    Механизм преобразования отражает физико-химические закономерности превращения сырья в продукт (кинетические уравнения, законы), а механизм воздействия описывает развитие специфических эффектов ГА-воздействия в данном конкретном процессе. Первая ветвь связи образует таксономическое поле, а вторая — мерономическое (рис. 1.4). [c.23]

    На рис. 3.7 показаны схема ламинарного пламени, распределение в нем температуры и скорости теп-ловцделеиия. Заштрихованная часть представляет собой зону пламени — светящуюся зону или фронт пламени. Слева от светящейся зоны находится свежая горючая смесь. На расстоянии 5—10 мм от фронта пламени в свежей смеси начинают протекать физико-химические процессы, приводящие к подъему температуры смеси и выделению тепла. Эту зону можно назвать зоной предпламен-ного превращения. Справа от светящейся зоны лежит зона продуктов сгорания. [c.117]

    Применительно к ДВС под термином горение следует подразумевать весь комплекс различных физико-химических превращений топливо-воздущной смеси (ТВС), заверщающихся выделением тепла и излучением света. [c.147]

    Для объяснения на6. 1юдаемых эффектов была построена математическая модель, основанная на принципах механики многофазных сред и описывающая гидродинамические процессы с учетом физико-химических превращений, происхо-дящ11х в райзере лифт-реактора каталитического крекинга при подаче восстанавливающего агента [4.38, 4.39]. Результаты численного решеипя показывают (рнс. 4.4), что существующий в реальных условиях характер течения в райзере реакюра не обеспечивает необходимое перемешивание подаваемого топливного газа с катализатором над областью ввода катализатора в райзер. Это приводит, согласно полученным [c.123]

    В книге рассмотрены общие теоретические положения процессов очистки газов от нежелательных примесей методами катапитического превращения их в безвредные продукты. Приведекы результаты исследований по разработке и практическому решению вопросов очистки различных газов и газовых смесей от кислорода, окиси и двуокиси углерода гидрированием их на высокоактивном никель-хромовом катализаторе промышленного изготовления. Описаны методы приготовления промышленных катализаторов, технология произвад-ства никель- бмового катализатора и физико-химические свойства его. [c.395]

    Если здесь и наблюдаются явления физико-химического характера, как это т1оказал Гурвич, tJo все же в основном действие серной кислоты Следует приписать чисто-химическим реакциям. При действии на асфальты серная кислота вызывает ряд превращений, которые характеризуютс-я увеличением молекулярного веса с одаовре-менным понижением растворимости асфальта в нефти. [c.185]

    Нет смысла более подробно останавливаться на деталях данной системы формализации знаний, поскольку они подробно освещены в отдельном издании настоящей серии по системному анализу процессов химической технологии [9]. Отметим только, что этот подход основан на формулировке обобщенной системы уравнений переноса массы, энергии, импульса, момента импульса, электрического и магнитного заряда с учетом всех возможных видов превращений вещества и энергии (исключая внутриатомные), преобразовании обобщенной системы уравнений переноса с помощью локального варианта уравнения Гиббса, получении на этой основе обобщенной диссипативной функции физико-химической системы, декомпозиции обобщенной диссипативной функции на все возможные виды диссипации энергии, введении диаграммной символики для каждого вида диссипации и дополнении этой символики диаграммным изображением сопутствующих явлений недиссинатив- [c.226]

    Тепловая энергия, получаемая в нечи, должна покрывать ее расходы при работе печей. Тепловая энергия в печах состоит из тепловой энергии, расходуемой непосредственно для проведения химического или физико-химического превращения материалов, и тепловой энергии, компенсирующей потери (с продуктами, отходящими газами и через футеровку). В печах используется тепло, полученное от сжигания топлира и от преобразования электрической энергии в тепловую, и тепло от экзотермических реакций. [c.13]


Библиография для Превращения физико-химические: [c.7]    [c.274]   
Смотреть страницы где упоминается термин Превращения физико-химические: [c.194]    [c.316]    [c.129]    [c.410]    [c.177]    [c.229]    [c.90]    [c.10]   
Введение в физическую химию и кристаллохимию полупроводников Издание 2 (1973) -- [ c.228 ]




ПОИСК





Смотрите так же термины и статьи:

Антипина. Физико-химическое исследование фторированной окиси алюминия — катализатора превращений углеводородов

Бездиффузионные физико-химические превращения

Крылова. Электронные явления, сопровождающие каталитические и другие физико-химические превращения на поверхности по данным экзоэмиссии

Математические модели физико-химических превращений в потоке подземных вод

Моделирование кинетики физико-химических превращений

Определение температур физико-химических превращений в полимере на дериватографе

Превращения химические

Расчет стационарного сверхзвукового течения нереагирующего га. 2.2.2. Расчет стационарного сверхзвукового течения с физико-химическими превращениями и двухфазного течения

Рефрактометрия в изучении взаимодействия и превращений компонентов химических систем Рефрактометрия как метод физико-химического анализа органических систем

Синайский. Физико-химические превращения минеральной части и их влияние па проводимость коллоидной плазмы

Теилота физико-химических превращений

Упругопластические свойства . О кинетике физико-химических превращений твердых тел в ударных волнах

Физико-химические особенности полимераналогичных превращений сополимеров

Физико-химические превращения материалов в печи

Физико-химические превращения материалов впечи

Физико-химические превращения фосфоритов различных месторождений в процессе их восстановления

Физико-химический анализ — метод экспериментального изучения гетерогенных равновесий и фазовых превращений



© 2024 chem21.info Реклама на сайте