Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Системы многокомпонентные азот—кислород

    Чаще всего для полимеризации используют многокомпонентные каталитические системы, в которые наряду с соединением переходного металла входит сокатализатор — органическое производное или галогенид элемента I—IV групп периодической системы и активатор — соединение, содержащее атомы кислорода, галогена, азота, фосфора или серы. Более подробные сведения о составе каталитических систем, применяемых для полимеризации циклоолефинов, можно найти в недавно опубликованном обзоре [5]. [c.319]


    Известны различные методы расчета процесса ректификации многокомпонентных смесей [2, 5, 27, 53, 58,, 69]. При расчетах процесса ректификации воздуха неприемлемо большинство упрощающих допущений, принимаемых во многих случаях при расчетах ректификации многокомпонентных смесей. Расчет ВРК следует выполнять в соответствии с указанными особенностями схем узлов ректификации воздуха. Расчет требует точного учета термодинамических свойств тройной системы кислород — аргон — азот равновесных соотношений и энтальпий жидкости и пара [47]. [c.72]

    Газоанализаторы системы ВТИ предназначены для полного общего анализа многокомпонентной газовой смеси, состоящей из кислых газов, непредельных углеводородов, кислорода, окиси углерода, водорода, предельных углеводородов и азота. Все газы, кроме водорода и предельных углеводородов, которые находят сожжением, определяют поглощением. В настоящее время в лабораторной практике распространены две модели газоанализатора ВТИ-1 (ГОСТ 5439—50) и ВТИ-2 (ГОСТ 5439—56). [c.199]

    Для достижения высокой точности в описании свойств газовой и жидкой фаз некоторые исследователи работающие в этой области, использовали уравнения состояния повышенной сложности с дополнительньТми константами. Однако для получения этих констант нужно больше экспериментальных данных. Поэтому многокомпонентные уравнения состояния полезны только для ограниченного числа газов и жидкостей, по которым имеются обширные экспериментальные данные. Например, Бендер [8] использовал чрезвычайно усложненное уравнение с 20 константами. Он применил это уравнение для описания свойств азота, кислорода и аргона, а затем, использовав дополнительные бинарные константы, рассчитал равновесие пар—жидкость для жидкого воздуха, получив отличные результаты. К сожалению, использование метода Бендера ограничено теми нет сколькими системами, для которых имеется много экспериментальных данных. [c.330]

    Процесс коррозии многокомпонентных конструкционных материалов в жидкометаллических теплоносителях является сложным и состоит из нескольких параллельно идущих многостадийных гетерогенных процессов. При повышенном содержании кислорода в жидком щелочном металле в сталях на некоторой глубине происходит образование сложных оксидов типа МеО-НзаО и Ме0-(Ыа20)2—так называемое внутреннее окисление. Кроме того, как в циркулирующей, так и в неподвижной жидкометаллической системе происходит селективное растворение и перенос компонентов, перераспределение углерода и азота между различными конструкционными материалами или участками конструкции, находящимися при разных температурах, проникновение жидкого металла в твердый. Эти процессы вызывают не только коррозионные потери массы, но и физико-химические и структурные изменения материалов охрупчивание, азотирование, эрозионное разрушение, изменение состава поверхностного слоя. Скорость переноса массы и селективного растворения компонентов сталей [c.259]


    Математическое описание модуля WQ. Модуль WQ (со встроенным модулем AD) описывает взаимосвязанные процессы в многокомпонентных системах. WQ-модуль решает систему дифференциальных уравнений, описывающую физическое, химическое и биологическое взаимодействие, включая выживание бактерий, выдавая в результате содержание кислорода и избыточные уровни нитратов в водной среде. Как базис для описания условий качества воды, AD вычисляет соленость S и температуру Т. Основные параметры модуля WQ БПКр, БПКв, БПКд, обозначающие соответственно растворенную, взвешенную и донную фракции БПК, аммоний и нитратный азоты (NH3 и NO3), а также растворенный кислород (РК). На происходящие процессы и концентрацию параметров влияют внешние факторы, такие как солнечная радиация и выделение тепла. Процессы описываются дифференциальными уравнениями. [c.312]

    С. 3. Васильев, В. И. Летичевский, И. И. Маергойз (Всесоюзный научно-исследовательский институт электротермического оборудования, Москва). Специфика процесса очистки контролируемых атмосфер, образующихся при неполном сгорании природного газа, заключается в необходимости удаления из многокомпонентной системы (основу которой составляют азот, 80 %, и водород) примесей, имеющих существенно отличные друг от друга величины адсорбционных взаимодействий с цеолитом. Наряду с хорошо сорбирующимися влагой (в газе ее исходный объем составляет около 3 %) и диоксида углерода (до 12 %) требуется очищать газ от малосорбирующихся оксида углерода (1—6%) и кислорода (0,01 %). Экспериментальные исследования статики адсорбции показали, что цеолит СаА имеет равновесную адсорбционную емкость по СО, в 5—6 раз меньшую, чем по СО2, и в 7—8 раз меньшую, чем по Н2О. При этом степень отработки этой емкости в динамических условиях при совместной адсорбции СО и СО2 составляет соответственно 0,125 и 0,667 (при поглощении только СО 0,4—0,5). В результате цеолит показывает в таком процессе при нормальных условиях динамическую активность по СО менее 0,1 г на 100 г, в то время как по СО2 7,5—9 г на 100 г. [c.181]

    Известны различные методы расчета процесса ректификации многокомпонентных смесей на вычислительных машинах [2, 27, 53, 69], несколько работ посвящено использованнию ЭЦВМ для расчета ВРК [32, 61, 73]. Излагаемый ниже метод расчета процесса ректификации тройной смеси кислород—аргон—азот на ЭЦВМ разработан с учетом указанных выше особенностей процесса ректификации воздуха 45]. С достаточно высокой точностью учтены термодинамические свойства системы — равновесные соотношения и теплота испаре- [c.85]


Смотреть страницы где упоминается термин Системы многокомпонентные азот—кислород: [c.41]    [c.42]    [c.386]   
Справочник по разделению газовых смесей (1953) -- [ c.85 , c.113 , c.117 , c.184 ]




ПОИСК





Смотрите так же термины и статьи:

Азот кислород

Системы многокомпонентные

Системы многокомпонентные азот водород кислород метан углерода окись

Системы многокомпонентные азот—аргон—кислород

Системы многокомпонентные азот—кислород—углекислый



© 2025 chem21.info Реклама на сайте