Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фракционирование внутриклеточных компонентов

    При идеальных условиях выделения внутриклеточные компоненты можно было бы получать в том же виде и количестве, в которых они существуют в интактных клетках, не нарушая таким образом их морфологической структуры и не изменяя их активности. Однако большинство существующих в настоящее время методов фракционирования всем этим требованиям не удовлетворяет, и при выборе того или иного метода часто приходится иметь в виду, что в ходе фракционирования за счет сохранения морфологической структуры клетки может нарушиться ее активность, и наоборот. [c.35]


    Изучение клеточной организации и попытки установить связь между структурой и функцией на различных иерархических уровнях — от простых молекул до макромолекул и таких агрегатов, как мембраны или частицы, до субклеточных единиц и, наконец, клеток — все это составляет одну из самых увлекательных и перспективных областей исследования в современной биологии. Для биохимика и цитолога выяснение химического значения различных сложных структурных элементов, обнаруженных в клетке, важно не только само по себе оно является необходимой ступенью любого исследования, направленного на то, чтобы понять, как происходит синтез, распад и взаимодействие этих элементов. Мы начинаем догадываться, что именно в этих сложных структурах скрыт секрет механизмов, с помощью которых осуществляется регуляция клеточных процессов как в пространстве, так и во времени. Этот секрет, возможно, заключается, по крайней мере отчасти, в том, что различные клеточные компоненты — главным образом ферменты, а также их субстраты и модификаторы (активаторы и ингибиторы) — находятся в разных отсеках клетки и потому не всегда доступны друг для друга. Из сказанного вытекает два вывода, подтвержденных в последнее время многочисленными экспериментальными данными 1) в клетке существует четкое распределение некоторых ключевых компонентов, особенно ферментов они локализуются в (или на) определенных клеточных структурах, представляющих собой микроскопические внутриклеточные органы, так называемых органеллах 2) эти структуры, а вместе с ними и соответствующие клеточные компоненты можно выделить с помощью подходящих мягких методов разрушения клеток (гомогенизация) и последующего фракционирования. [c.239]

    Де Дюв указывает, что любой эксперимент этого типа включает в себя три стадии 1) деструктивная стадия, в процессе которой суспензия ткани или клеток превращается в гомогенат 2) перераспределение компонентов гомогената по фракциям на основании их физических свойств (т. е. константы седиментации, плотности и т. д.) 3) анализ этих фракций. Для интерпретации полученных результатов необходимо в свою очередь провести три стадии реконструкции 1) определение морфологических и биохимических свойств выделенных фракций 2) переоценка данных, полученных на предыдущей стадии, применительно к компонентам исходного гомогената и методам фракционирования, использованным вначале, и, наконец, 3) отождествление компонентов гомогената с определенными внутриклеточными образованиями. [c.250]

    Обычно вначале проводят фракционирование по какой-либо схеме, а затем избирают определенные ферменты, активности или какие-либо ееш ества в качестве так называемых маркеров, или индикаторов, которые, судя по опыту, могут быть полезны для идентификации некоторых внутриклеточных частиц или компонентов. На основании полученных результатов вычерчивают кривую распределения и таким образом определяют частицы с точки зрения характерных биохимических активностей или, наоборот, приписывают характерные биохимические свойства различным типам частиц. Распространение этого метода на весь спектр ферментов и других индикаторов позволяет закрепить определенные функции клетки за известными внутриклеточными компонентами и, наоборот, описать и впоследствии идентифицировать новые, или но крайней мере ранее не известные, морфологические компоненты на основании биохимических данных. Примером успешного применения такого подхода является отождествление частиц кислой фосфатазы с лизосомами, а частиц уратоксидазы с микротельцами (называемыми также пероксидосомами) в печени млекопитающих. В основе этого подхода лежат два главных допущения, отмеченных де Дювом 1) каждый из ферментов локализуется только в одном каком-либо месте внутри клетки и 2) популяция субклеточных частиц в ферментативном отношении гомогенна. [c.251]


    Процессы, характерные для целой клетки, протекают в отдельных клеточных частицах и органеллах, которые для анализа выделяют из клетки с помощью фракционирования. Этот процесс обычно состоит из двух этапов (разд. 1.10.3) сначала клетки разрушают, а затем из образовавшейся суспензии методом центрифугирования (гл. 2) выделяют нужные частицы и органеллы. Дальнейшее разделение индивидуальных компонентов клеточных частиц и органелл и изучение их свойств проводят с помощью центрифугирования (гл. 2), хроматографии (гл. 3) или электрофореза (гл. 4). Для. определения состава, механизма действия и функций клеточных компонентов пользуются сложными количественными и качественными аналитическими методами. На атомном и молекулярном уровнях применяют целый ряд спектральных методов (гл. 5) механизм действия клеточных частиц и внутриклеточные взаимодействия изучают, используя одновременно несколько аналитических методов, таких, как спектроскопия (гл. 5) и радиоизотопные методы (гл. 6), потенциометрия, полярография (гл. 7) и манометрия (гл. 8). [c.18]


Смотреть страницы где упоминается термин Фракционирование внутриклеточных компонентов: [c.210]    [c.210]   
Ферменты Т.3 (1982) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте