Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масс-спектрометрия методы мягкой ионизации

    Методы ионизации, используемые в аналитической масс-спектрометрии, можно классифицировать на различной основе (см. табл. 9.4-3). Важное значение имеет деление на методы мягкой и жесткой ионизации. При жесткой ионизации молекулам аналита предается значительное количество энергии, что с большой вероятностью приводит к реакциям мономолекулярной диссоциации. Ионизация электронным ударом, как уже обсуждалось ранее, является типичным примером жесткой ионизации. Большинство других способов относятся к мягкой ионизации. Обычно они приводят к незначительной фрагментации, и таким образом можно получить информацию о молекулярной массе. Классификация методов мягкой ионизации может основываться на способах ввода вещества, хотя некоторые комбинированные способы могут не укладываться в четкие рамки такой классификации. Наиболее важные методы мягкой ионизации будут подробно обсуждены в последующих разделах. [c.266]


    Образовавшиеся ионы ускоряются при прохождении через отрицательно заряженные щелевые диафрагмы 6 по направлению к масс-анализатору. Неионизированные молекулы, как и незаряженные осколки, при помощи диффузионного насоса 8 выводятся из масс-спектрометра. Наряду с ионизацией электронным ударом иногда используют также другие методы получения ионов. При осуществлении фотоионизации необходимая энергия поставляется ультрафиолетовым излучением. Для этого требуется излучение с длиной волны 150—80 нм (вакуумная ультрафиолетовая область), соответствующее ионизационному потенциалу 8—15 эВ. При ионизации полем используют сильное электрическое поле, способное оторвать электроны от молекул вещества пробы. В обоих методах ионизации происходит мягкая ионизация, так как подводимая энергия лишь немного превышает потенциал ионизации и, таким образом, едва разрывает связи в молекулярном ионе . Поэтому спектры, получаемые при фотоионизации и ионизации по- [c.286]

    В количественном анализе в большинстве случаев масс-спектрометрию используют в сочетании с хроматографическими методами. В этом случае масс-спектрометр работает в режиме полного сканирования или, гораздо чаще, в режиме селективного сканирования ионов (см. разд. 9.4.2). Очевидно, что преимущества селективного сканирования ионов заключаются в увеличении отношения сигнал/шум из-за большего времени накопления данных для интересующих ионов. Однако селективное сканирование ионов также означает и уменьшение объема информации, получаемой из масс-спектра. В связи с этим контролирующие органы часто требуют результатов работы в режиме полного сканирования. Хорошим компромиссом является определение нескольких специфичных ионов для каждого компонента при использовании селективного сканирования ионов. В этом случае интересующее нас соединение считается найденным только тогда, когда относительные интенсивности выбранных пиков находятся в заданных пределах, а выбранные пики имеют максимальную интенсивность в заданном окне времени. Когда в количественном анализе используют методы мягкой ионизации, как, например, в случае сочетания масс-спектрометрии и жидкостной хроматографии, то необходимо использовать тандемную МС, так как из-за отсутствия фрагментации только сам специфический ион присутствует в спектре. Селективный мониторинг реакции при помощи тандемной масс-спектрометрии обеспечивает более высокую надежность определения. [c.298]

    Цель данного раздела заключается в том, чтобы представить краткий обзор некоторых областей применения масс-спектрометрии и более подробно на примерах рассмотреть проблемы, обсужденные в предыдущих разделах, как, например, тандемную масс-спектрометрию и методы мягкой ионизации при детектировании, скрининге, количественном определении или выявлении структуры соединений. [c.299]


    При определении структуры соединений с использованием методов мягкой ионизации важнейшую роль играет тандемная масс-спектрометрия. [c.302]

    Все более широкое применение масс-спектрометрия находит при определении полярных, нелетучих и (или) термически нестабильных соединений. В том случае, когда описанные выше методики дериватизации оказываются неприемлемыми, и (или) аналитическая методика не позволяет включить (часто очень сложную) стадию дериватизации, масс-спектрометрический анализ таких веществ можно осуществить только при помощи методов мягкой ионизации (разд. 9.4.2). С точки зрения проблемы выяснения структуры соединений, методы мягкой ионизации имеют тот недостаток, что, хотя молекулярную массу определить достаточно легко, в общем случае не наблюдается значимой фрагментации, позволяющей сделать какие-то выводы о структуре соединений. В этом случае, методы мягкой ионизации следует сочетать с тандемной масс-спектрометрией (разд. 9.4.2). Фрагментацию частиц с четным числом электронов, полученных методами мягкой ионизации, можно провести при помощи диссоциации, вызванной соударениями. [c.302]

    Сочетание методов мягкой ионизации и тандемной масс-спектрометрии в настоящее время применяют очень часто, в основном благодаря относительной легкости использования тройных квадрупольных приборов. Этот вариант прекрасно подходит для идентификации и количественного определения лекарственных веществ и их метаболитов или для скрининга пищевых продуктов или объектов окружающей среды на загрязнители. Данный круг задач будет ниже кратко проиллюстрирован несколькими примерами, которые также демонстрируют, каким образом разрабатывается аналитическая методика. [c.302]

    Методы исследования труднолетучих высокомолекулярных и термически нестабильных соединений выделены в отдельную, пятую главу. Разнообразие состава и свойств исследуемых объектов предопределяет необходимость развития, с одной стороны, методов мягкой ионизации и с другой— методов деструкции. Среди последних весьма перспективным является способ термической деструкции образца непосредственно в области ионного источника масс-спектрометра, что обеспечивает возможность регистрации сравнительно крупных молекулярных фрагментов, сохраняющих нативную структуру. Рассмотрено также инструментальное оформление этих методов, обработка результатов с применением интегральных и дифференциальных масс-спектров. [c.6]

    Наряду с методом электронного удара в последние годы все более широкое применение получают методы мягкой ионизации, к которым относится фотоионизация и ионизация в электростатическом поле. Развитие и широкое применение этих методов тесно связано с органической масс-спектрометрией и стремлением по возможности снизить вероятность диссоциативной ионизации. [c.300]

    В масс-спектрометрах для бомбардировки образца обычно используются электроны с энергией 70 эВ, хотя напряжение можно варьировать в широких пределах. В спектрометрах с ионизацией полем [8], чтобы добиться эффекта ионизации, используют электрическое поле напряженностью 10 —10 В/см. В этом методе молекула получает значительно меньшее количество энергии, и ионизационный процесс называется мягким . Электрон при этом удаляется за счет квантовомеханического туннельного эффекта. В последующих разделах обсуждаются некоторые достоинства различных ионизационных методов. [c.316]

    В этой главе будут рассмотрены особенности масс-спектров органических соединений, регистрируемых при ионизации в условиях ЭУ. Этот метод ионизации наиболее распространен. Он позволяет получать масс-спектры с многочисленными пиками осколочных ионов, несущих большой объем информации о структуре соединения. Как отмечалось выше, другие, в основном "мягкие", методы ионизации обеспечивают получение высокостабильных молекулярных или псевдомолекулярных ионов, пики которых, как правило, доминируют в спектрах. В последнее время разработан метод активизации столкновением или масс-спектрометрия/масс-спектрометрия (см. гл. 8), который позволяет разрушать такие стабильные ионы и регистрировать достаточно многолинейные масс-спектры. В конечном счете характер масс-спектров определяется рядом факторов, от которых зависят вероятность образования катионов и катион-радикалов, а также их дальнейший распад на осколочные ионы. [c.88]

    В тандемной масс-спектрометрии первый масс-спектрометр (MS-I) служит источником ионов определенной массы для второго масс-спектрометра (MS-II). В зоне столкновений масс-спектрометра MS-II эти ионы при соударении с электронами распадаются на серию новых ионов-фрагментов, которые и анализируются прибором. Данный метод, который сокращенно обозначают MS/MS, особенно перспективен в анализе смесей веществ большой молекулярной массы. Сначала в первом приборе используют мягкие методы ионизации, что позволяет получить смесь молекулярных ионов, но избежать при этом сильной фрагментации. Из этой смеси масс-спектрометр MS-I отбирает лишь одну из масс, которая направляется во второй прибор MS-II, где подвергается глубокой фрагментации и дает полный спектр, характеризующий строение данного компонента смеси. Важными достоинствами тандемной масс-спектрометрии являются высокая скорость и специфичность. Это мощный метод анализа групп соединений близкого молекулярного строения. Он особенно эффективен, если нужно подавить все сигналы побочных веществ и загрязняющих примесей, всегда присутствующих в биологических образцах. Этот метод позволяет определять аминокислотные последовательности в белках, содержащих до 20 аминокислотных остатков, и в некоторых случаях для этого достаточно всего несколько микрограммов вещества. [c.197]


    В общей случае можно утверждать, что следует предпочесть наиболее легкое решение проблемы — ГХ-МС с квадрупольным масс-спектрометром. Если летучесть или устойчивость аналита недостаточна для ГХ-МС, можно либо пойти по пути химической дериватизации, либо использовать методы мягкой ионизации, если речь идет о сочетании с ЖХ в режиме on-line или off-line. Если определению вещества мешают компоненты, присутствующие в образце, улучшают либо хроматографическое разделение, либо спектральную селективность, проводя измерения с более высоким масс-спектральным разрешением или используя тандемную МС. Очевидно, что спектрометры с высоким разрешением нужно применять, если требуется точное определение масс. [c.286]

    В то время как поиск в компьютерных базах данных в случае масс-спектрометрии с ионизацией электронным ударом является достаточно мощным средством благодаря как временной ( день ото дня ), так и межлабора-торной ( от прибора к прибору ) воспроизводимости спектров электронного удара, ситуация в случае методов мягкой ионизации и десорбционной химической ионизации совершенно противоположна. В этих случаях масс-спектры настолько сильно зависят от экспериментальных условий, что накопление универсальных библиотек становится невозможным. Однако в некоторых случаях использование библиотек внутри фирмы или института может быть оправданным. [c.298]

    Важной характеристикой значимости количественного метода является предел обнаружения или нижняя граница определяемых содержаний. Для ГХ-МС достигнуты величины порядка 1 пг/с (масс-спектрометр является детектором, чувствительным к потоку массы). Современные квадрупольные масс-спектрометры обеспечивают, например, ГХ-МС-определение (с отношением сигнал/шум, равным 30) 200 пг метилстеарата в случае ионизации электронным ударом и 100 пг бензофенона в случае химической ионизации. Приборы с двойной фокусировкой имеют характеристики, обеспечивающие отношения сигнал/шум, равные 200 при ГХ-МС-определении массы метилстеарата 100 пг как для химической ионизации, так и для ионизации электронным ударом и определение 30 фг 2,3,7,8-ДБДД с отношением сигнал/шум не менее 10. Однако, если вспомнить о химических процессах, сопровождающих ионизацию в случае электронного удара и особенно в методах мягкой ионизации, становится ясно, что отклик детектора весьма значительно зависит от исследуемого соединения. Более того, приведенные числа дают мало представления о том, каких пределов обнаружения можно ожидать в реальном случае. В случае анализа реальных образцов пределы обнаружения прежде всего определяются так называемым химическим шумом, а не электронными шумами детектора и цепи усилителя. Успех применения метода в анализе реальных образцов полностью зависит от одновременной и совместной настройки различных его составляющих пробоподготовки и разделения образца, ионизации, масс-спектрометрического анализа, детектирования и обработки данных. Кроме того, в такой ситуации более важны концентрационные (относительные), а не абсолютные пределы обнаружения. [c.299]

    Очевидно, что методика идентификации при помощи ГХ-МС или прямого ввода пробы и ионизации электронным ударом не всегда приводит к успеху. В принципе можно сказать, что ее применение ограничено веществами, имеющими значительную плотность паров (летучесть) и термическую стабильность. В этом отношении прямой ввод пробы имеет более широкий диапазон приложений, чем ГХ-МС. Область применения ГХ-МС может быть расширена за счет дериватизации компонентов, увеличивающей их летучесть, что часто находит применение в традиционном газохроматографическом анализе (см. разд. 5.2). В масс-спектрометрии использование подобных реакций дериватизации преследует две цели. Первая из них заключается в увеличении летучести вещества экранированием полярных групп, т. е. полярные протоны кислот, аминов, спиртов и фенолов заменяются более инертными группами путем, например, этерификации кислотных групп, ацетилирования амихюгрупп или силанизиро-вания. Кроме этого, дериватизацией можно улучшить параметры ионизации. Так, включение пентафторфенильного заместителя обеспечивает более интенсивный отклик в случае масс-спектрометрии отрицательно заряженных ионов при химической ионизации электронным захватом. В рамках этих направлений, многие нелетучие и (или) термически нестабильные вещества, такие, как стероиды, (амино)кислоты, сахара, и широкий спектр лекарственных препаратов, становятся доступными газохроматографическому и ГХ-МС-анализу. Очевидно, что процедура дериватизации влияет на массу исследуемого соединения. В общем случае, сдвиг в область более высоких значений m/z является преимуществом, так как в этой области должно быть меньшее число мешающих компонентов. Однако в случае идентификации неизвестных соединений надо помнить, что дериватизация может привести и к непредвиденным артефактам тогда для определения молекулярных масс рекомендуется использовать методы мягкой ионизации (разд. 9.4.2). [c.301]

    Пульсация ионного источника необходима для того, чтобы избежать одновременного прихода к детектору ионов с различными т/г. Схематичное изображение ВП-масс-спектрометра приведено на рис. 9.4-7,б. Обычно ВП-анализаторы комбинируют с методами ионизации ПД и MALDI (см. выше разд. сМетоды мягкой ионизации , с. 266). Их преимущество заключается в практически бесконечном диапазоне анализируемых масс, высокой скорости сканирования, простоте и низкой стоимости прибора. Хотя на сегодняшний день разрешение спектрометра ограничено (обычно не более 300), новые разработки, а именно ВП-анализатор с отражательной геометрией и принудительной экстракцией ионов, позволили достичь значительного улучшения разрешения (до 5000), что дало возможность проводить точный анализ масс. [c.277]

    Ударные волны получают в длинных трубах, разделенных разрушаемой диафрагмой на два отделения. Одно заполнено ускоряющим газом, обычно водородом или гелием, при давлении 400—750 мм рт. ст., другое — исследуемым газом (в частности, кислородно-ацетиленовыми смесями) в Аг или Хе при полном давлении в несколько миллиметров ртутного столба. При резком разрыве диафрагмы в секции ударной трубы, где находится смесь при низком давлении, со сверхзвуковой скоростью распространяется плоская ударная волна. При этом температура может быть вычислена на основании термодинамических свойств газа. Для исследования протекаюпщх в ударной волне процессов применяли различные методики [7] анализ газов, истекаюпщх через малое отверстие, с помощью времяпролетного масс-спектрометра [8], измерение плотности газа в ударном слое в зависимости от времени с помощью поглощения мягких рентгеновских лучей [9], исследование излучения 10, а также измерение ионизации в ударной волне методом проб Лэнгмюра [11.  [c.558]


Смотреть страницы где упоминается термин Масс-спектрометрия методы мягкой ионизации: [c.166]    [c.274]    [c.863]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.266 , c.289 ]




ПОИСК





Смотрите так же термины и статьи:

Ионизация в масс-спектрометрии

Ионизация в масс-спектрометрии методы мягкой ионизации

Ионизация в масс-спектрометрии методы мягкой ионизации

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры

Методы ионизации



© 2025 chem21.info Реклама на сайте