Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Особенности ферментов как белковых катализаторов

    Другая особенность ферментов как белков — большая лабильность, легкая изменяемость свойств в зависимости от условий среды (pH, температуры, присутствия активаторов и ингибиторов и др.). Это позволяет проводить химические реакции в очень мягких условиях в отличие от применения неорганических катализаторов— при низкой температуре, нормальном давлении, невысоком pH среды и т. д. [c.115]


    Четыре особенности отличают ферменты от всех прочих катализаторов. Во-первых, эти биокатализаторы исключительно эффективны. Нри оптимальных условиях большинство ферментативных реакций протекает в 10 —10 раз быстрее, чем те же реакции в отсутствие ферментов. Число оборотов (т. е. число молекул субстрата, превращаемых за одну минуту, на одну молекулу фермента) для большинства ферментов равно приблизительно 1000, а в некоторых случаях может превышать 10 . Следует при этом иметь в виду, что скорость отдельных стадий ферментативных реакций лимитируется диффузией реагирующих веществ или, во всяком случае, зависит от нее. Таким образом, многие химические реакции, которые обычно протекают только при высоких температурах или только в сильно кислой или сильно щелочной среде, в присутствии соответствующих ферментов могут идти быстро и количественно при комнатной температуре и при значениях pH, близких к нейтральному. Во-вторых, для большинства ферментативных реакций характерна высокая специфичность как в отношении природы катализируемой реакции, так и в отношении структуры используемого субстрата. В-третьих, круг реакций, катализируемых ферментами, необычайно широк. Ферменты катализируют реакции гидролиза, поликонденсации, окисления — восстановления, дегидрирования, альдольно11 конденсации, реакции переноса различных групп, а также ряд других реакций. Мы можем, таким образом, сказать, что белки — катализаторы с исключительно широким спектром действия. Наконец, в-четвертых, активность самих ферментов в клетке строго регулируется. Скорость синтеза ферментов, а также их конечная концентрация находятся под генетическим контролем и регулируются с помощью малых молекул эти малые молекулы часто являются субстратами или продуктами реакций, катализируемых теми н е ферментами. Кроме того, ферменты могут существовать как в активной, так и в неактивной форме, причем скорость и степень их превращения в каждом конкретном случае зависит от свойств окружающей среды. Почти все биоло- [c.189]

    Ферменты являются катализаторами белковой природы, и, следовательно, для выяснения детальных механизмов их действия необходимо знать как химию белков, так и особенности катализируемых ими реакций. [c.17]

    Опытные данные показали, что катализаторы понижают энергию активации реакции в 2—3 раза. По этой причине число активных молекул в реакционной массе возрастает и увеличивается скорость реакции. Особенно активны катализаторы, содержащиеся в живых организмах ферменты . Они могут снижать энергию активации в 4—5 и более раз. Вот почему в клетках нашего тела уже при низких температурах так легко происходят расщепление, окисление и синтезы сложных по составу веществ (сахара, жиров, белков и др.). [c.145]


    Ферменты, как и все другие протеины, находятся в природных условиях в составе сложных биологических систем, в сложных смесях веществ. В системах, входящих в состав клеток микроорганизмов, растений, животных тканей разнообразие белков очень велико. Главную часть их составляют ферменты. Большинство их присутствует в весьма небольших количествах. Кроме того, в смесях имеются углеводы, липиды, нуклеиновые кислоты и другие органические вещества, а также различные минеральные ионы. Большинство компонентов способно образовывать с белками соединения различной прочности или находиться в свободном состоянии. Многие из этих веществ, особенно сопутствующие белки, могут оказывать влияние на активность ферментов, влияя либо непосредственно на них, либо на субстрат или продукты реакции. В биологических системах действие различных ферментов часто бывает взаимосвязанным. Чтобы изучить и провести необходимую реакцию (технологический процесс), желательно располагать данным катализатором в очищенном виде. [c.138]

    Интерес к структуре и биохимическим свойствам белков резко стимулировала классическая работа Самнера. Этот автор в 1926 г. установил, что биокатализаторы, т. е. ферменты, представляют собой белки. Само явление катализа было описано в 1835 г. Берцелиусом. В своей статье он указывал, что диастазу из картофеля —фермент, катализирующий гидролиз крахмала,— можно рассматривать как пример биокатализатора и что, по-видимому, все компоненты живых тканей образуются под действием таких катализаторов. Последующие работы полностью подтвердили этот вывод. Некоторые вещества этого рода были известны и ранее, еще до открытия биокатализаторов теперь же многие биокатализаторы были выделены и подвергнуты частичной очистке, что дало возможность исследовать кинетику катализируемых ими реакций. Эти исследования наряду с развитием динамических аспектов биохимии (о чем шла речь выше) привлекли пристальное внимание к ферментам. Тем не менее до работ Самнера химическая природа ферментов оставалась совершенно неизвестной. Правда, первые исследователи, работавшие в этой области, высказывали предположение, что ферменты имеют белковую природу, но в начале XX в. принято было считать, что ферменты не принадлежат ни к одному из известных классов органических соединений. Открытие Самнера было встречено весьма скептически, особенно со стороны Вильштеттера и его учеников. Между тем утверждение Самнера основывалось на экспериментальных данных ему удалось полу- [c.11]

    Ферменты действуют чрезвычайно быстро. Их особенность состоит не только в том, что они способны заставить вступить в соответствующие реакции большие количества веществ (медленно), но и резко ускорить эти реакции. О быстроте их действия можно судить по так называемой молекулярной активности, величине, показывающей число молекул субстрата (или эквивалентов затронутой группы), которое превращает за 1 мин одна молекула ферментного белка. Молекулярная активность для многих ферментных белков достигает десятков и сотен тысяч, а для одного из них (каталазы) — даже несколько миллионов. Это значит, что за 60 сек одна молекула катализатора обычно может заставить расщепиться, окислиться или измениться иным путем тысячи и десятки тысяч молекул субстрата. [c.97]

    Белки - природные высокомолекулярные соединения, являющиеся структурной основой всех живых организмов. К ним относятся ферменты - катализаторы многочисленных реакций в живых организмах, дыхательные пигменты, многие гормоны. Число встречающихся в природе белков крайне велико, их частью являются а-аминокислоты НзЫ - СН(К) - СООН, где Е - углеводородный радикал алифатического или ароматического ряда, либо гетероциклический радикал, содержащий серу и азот. Различие в химическом строении белков обусловлено количеством и порядком чередования аминокислот в молекуле. Белковые молекулярные цепочки располагаются в пространстве в виде спирали или волокон. Главная особенность белков - способность самопроизвольно формировать пространственную структуру, свойственную только данному виду растения, т.е. они обладают памятью макромолекулы белков могут записать , запомнить и передать наследству информацию. В этом состоит химический механизм самовоспроизведения. [c.56]

    Многое указывает на то, что подобный механизм активирования имеет особенно большое значение для протекания химических реакций, катализируемых ферментами. В этих катализаторах сложного состава роль активатора исполняют белки или другие сложные органические молекулы, которые служат матрицей для подходящей ориентации субстрата относительно каталитически активной группы, которая очень часто представляет собой ион металла. [c.18]

    Фермжты. Некоторые биологи считают, что в нашем организме одновременно функционируют до нескольких сотен тысяч или даже миллионы индивидуальных ферментов. Без этого количества ферментов жизненные отправления животного или растительного организма были бы вообще невозможны. По своей химической природе ферменты являются белками, наделенными каталитической активностью. Особенностью ферментов как катализаторов является резко выраженная специфичность их действия и высокая активность, во много раз превышающая активность неорганических катализаторов. [c.143]


    Изучение свойств ферментов, разработка методов определения активности ферментов и, наконец, получение ферментов в чистом виде окончательно опровергли виталистические представления о ферментах, что создало широкие перспективы для развития ферментологии. Вместе с этим удалось выявить специфические особенности ферментов как биологических катализаторов, отличающие их от обычных катализаторов, являющихся чаще всего неор1 аническими веществами и иногда несложными по своей структуре органическими соединениями. Специфические особенности ферментов определяются их белковой природой. Коллоидальное состояние, большая чувствительность к изменениям температуры и разрушение при 80° и выше, строгая зависимость активности ферментов от концентрации водородных ионов отличают ферменты от обычных катализаторов, не относящихся к белкам. Однако самыми замечательными свойствами, характерными для биологических катализаторов — ферментов, является специфичность их действия и чрезвычайно высокая активность. Эти свойства позволяют считать ферменты идеальными катализаторами, играющими важную роль в процессах обмена веществ, лежащих в основе жизнедеятельности организмов. [c.176]

    Ферменты представляют собой белки и являются характерными и специфическими катализаторами. Поэтому, чтобы ознакомиться с ними, необходимо прежде всего получить основные сведения о катализе и узнать о важнейших особенностях и свойствах белковых веществ. [c.11]

    В настоящее время достигнуты значительные успехи в получении физиологически активных веществ (ФАВ) на основе методов физико-химической биотехнологии, включающих направленный микробиологический синтез и биохимические методы превращения сложных органических веществ, особенно с использованием биологических катализаторов — ферментов, в частности иммобилизованных ферментов, а также на основе методов тонкого органического синтеза. Вместе с природными продуктами эти синтетические и биосинтетические вещества включают белки, в том числе ферменты, полипептиды и аминокислоты, нуклеиновые кислоты, нуклеотиды и нуклеозиды, полисахариды и низкомолекулярные углеводы, многие вещества направленного или специального физиологического действия — антибиотики, регуляторы различных типов, гормоны, витамины и многие другие. [c.5]

    Одна из важнейших функций белков состоит в специфическом катализе химических реакций. Лигандом в этом случае служит молекула субстрата, связывание которой ферментом - необходимая предпосылка химической реакции (рис. 3-52, Б). Ферменты способны очень сильно ускорять химические реакции - значительно сильнее, чем любые искусственные катализаторы. Столь высокую эффективность можно приписать нескольким факторам. Во-первых, ферменты увеличивают локальную концентрацию молекул субстрата в каталитическом центре и удерживают соответствующие атомы в ориентации, необходимой для последующей реакции. Но наиболее важное значение имеет тот факт, что часть энергии связывания непосредственно используется для катализа. Дело в том. что молекулы субстрата, перед тем как превратиться в продукты реакции, проходят через ряд промежуточных форм с измененной геометрией и измененным электронным распределением. Свободная энергия всех этих промежуточных форм и особенно наименее стабильных переходных состояний существенно снижена, если молекула связана с поверхностью фермента. Обычно ферменты имеют значительно большее сродство к нестабильным переходным состояниям субстратов, чем к их стабильным формам. Используя энергию связывания, ферменты помогают субстратам принять определенное переходное состояние и таким образом значительно ускоряют одну определенную реакцию. [c.158]

    Жизнь представляет собой тонкое динамическое равновесие между рядом синтезов и распадов, осуществляемых в открытой системе. Особенностью живых организмов является ускорение химических реакций при помощи таких катализаторов, которые создаются самими организмами. Эти катализаторы получили название ферментов (энзимов) и представляют собой белковые молекулы. Некоторые из ферментов — весьма стабильные и растворимые соединения и сравнительно легко поддаются выделению и очистке. В принципе выделение и очистка ферментов совершаются при помощи методов, которые используются в белковой химии, но ферменты выгодно отличаются от других белков тем, что они обнаруживают свое присутствие способностью катализировать определенные реакции. Это свойство дает возможность обнаружить фермент даже при его ничтожном содержании в материале. В настоящее время получено в кристаллическом виде или в состоянии высокой очистки свыше 140 ферментов. [c.202]

    Отмеченная выше специфичность действия катализаторов выражена особенно сильно у ферментов. Так, например, гидролитическое разложение углеводов происходит при участии определенных ферментов, которые не влияют на разложение белков и жиров разложение белков идет в присутствии других ферментов. Еще замечательнее, однако, то, что гидролиз разных углеводов (крахмала, различных сахаров и т. д.) идет в присутствии особого для каждого углевода фермента. [c.64]

    Ферментами называются белки, входящие в состав клеток и тканей организмов, играющие роль биологических катализаторов. Одной из особенностей живой клетки, ткани и организмов является способность осуществить необходимые для их жизнедеятельности превращения веществ при сравнительно низкой [c.118]

    Сами катализаторы (ферменты и коферменты), подобно другим компонентам клетки, образуются в процессе биологического синтеза, особенно интенсивного во время роста. Общие соображения, высказанные ранее, приложимы и к этим реакциям синтеза, которые, следовательно, зависят от систем реакций, катализируемых продуктами синтеза. Поскольку ферменты представляют собой белки, механизм их синтеза связан с РПК-матрицей (см. гл. И) компоненты и белка, и матрицы также должны синтезироваться ферментативным путем, а энергия, необходимая для образования большого числа связей. [c.82]

    Ферменты — очень сложные органические молекулы, представляющие собой глобулярные белки. Их каталитические центры состоят их ряда атомных групп, природа и взаимное расположение которых в пространстве строго детерминировано, что, собственно, и определяет каталитическую активность фермента, Все структурные и пространственные особенности каталитического центра заданы как последовательностью аминокислотных остатков полипептидной цепи данного белка (первичной структурой), так и упаковкой этой цепи Б фиксированную конформацию белковой глобулы (ее вторичной и третичной структурами Поэтому для химиков нет смысла пытаться построить искусственный структурный аналог такой чудовищно сложной конструкции, добиваясь сходства со свойствами оригинала. Не говоря уже о практически непреодолимых трудностях подобной задачи, она и смысла большого не имеет (если только мы не хотим создать искусственную жизнь). Дело в том, что каждый фермент решает узко специализированную задачу, а эта специализация лишь изредка совпадает с задачами человеческой химии. Смысл всей Проблемы не в этом, а в том, чтобы обеспечить дизайн квазиферментов под реальные задачи (ну, например, расщеплять высшие парафины до низших, т.е. делать бензин из мазута), т. е. не копировать или моделировать живые ферменты, а научится делать ферменте-подобные катализаторы на заказ (не копировать природу, а учиться у нес, воспринять ее методологию, а не результаты )- Кроме того, ферменты как катализаторы для лабораторного или про- [c.477]

    Ферменты обладают признаками как гомогенных, так и гетерогенных катализаторов. Они проявляют свою активность в водных растворах, что свойственно гомогенным катализаторам. Однако они имеют большую молекулярную массу, образующую мпкроповерх-ность раздела, на которой находятся особые участки — активные центры, состоящие из атомов, что свойственно гетерогенным катализаторам. Ферменты состоят из глобулярных белков, и для них характерны не только генетическн закодированная последовательность расположения отдельных аминокислот в иолипептидной цепи, но и разнообразие химических связей между отдельными звеньями этих цепей, определяющих уникальную для каждого фермента структуру. Поэтому одной из важных особенностей ферментов является высокая специфичность действия. Различают индивидуальную специфичность — способность катализировать только одну химическую реакцию и притом лишь данного субстрата — и групповую— способность катализировать ту же реакцию в разных субстратах. [c.115]

    Уже этого краткого рассмотрения основных характеристик полимеров достаточно для того, чтобы понять, что генезис, т. е. способ получения макромолекул из низкомолекулярных молекул мономеров, влияет практически на все основные свойства полимера. В природе полимеры (за исключением некоторых смол) образуются, как правило, с высокой степенью химической и пространственной регулярности, с правильным чередованием звеньев в структуре полимера. Это, например, молекулы целлюлозы, натурального каучука ( цыс-1,4-полиизопрен), белков и нуклеиновых кислот. В формировании природных полимеров принимают участие соответствующие ферменты и катализаторы, которые обеспечивают направленное протекание реакций. В начальный период развития химии синтетических полимеров, когда еще не были найдены совершенные катализаторы синтеза, получались полимеры с нерегулярной структурой, малой молекулярной массой и вследствие -этого с низкими физико-механическими показателями. По мере развития этой отрасли химической науки и производства (особенно с 50-х гг.) были разработаны способы получения пространственно и химически регулярных полимеров (стереоспецифическая полимеризация) из промышленнодоступных мономеров (этилен, пропилен, стирол и др.), что привело к громадному росту производства различных полимеров. Большинство из этих полимеров в природе не создаются. Получение полимеров осуществляется в результате реакций полимеризации или поликонденсации. [c.11]

    Своеобразную и важную роль играют многие процессы ферментативного катализа. Катализаторами в них служат ферменты (энзимы), которые представляют собой сложные органические вещества, принадлежащие обычно к белкам с высоким молекулярным весом, вырабатываемым в животных или растительных организмах и обладающим высокой каталитической активностью. Каждый фермент катализирует определенный химический процесс или определенную группу химических превращений. Ферментативный катализ играет больщую роль п жизнедеятельности организмов и широко используется в промышленности н в быту, в особенности при переработке пищевых продуктов (хлебопечение, квашение, винокурение и др.). При этом основными являются процессы брожения, т. е. такие процессы, в которых изменение химического состава вещества происходит в результате жизнедеятельности тех или других микроорганизмов, например дрожжей, плесеней или соответствующих бактерий. Действующим началом в этих случаях служат различные ферменты, вырабатываемые этими микроорганизмами, Ферменты сохраняют свою активность и способндсть действовать и будучи выделенными из микроорганизмов. [c.494]

    Очень перспективным методом очистки воды от всевозможных загрязняющих ее веществ, особенно синтетических, является использование иммобилизованных (закрепленных, нерастворимых) ферментов — ферментов второго поколения . Идея закрепления ферментов на нерастворимом в воде носителе и применения таких мощных катализаторов в технологических процессах и медицине возникла давно. Еще в 1916 г. осуществлена адсорбция инвертазы на активированном угле в свежевыделенной гидроокиси алюминия. С 1951 г. для фракционирования антител и выделения антигенов используют конъюгацию белков с целлюлозой. До недавнего времени существовал единственный метод закрепления ферментов — обыкновенная физическая адсорбция. Однако адсорбционная емкость известных материалов относительно белков явно недостаточна, а силы адгезии невелики, и разрыв связи между ферментом и поверхностью адсорбента может наступать от малейших изменений условий процесса. Поэтому такой метод иммобилизации не нашел широкого применения, но, поскольку он прост и может, по-видимому, способствовать выяснению механизма действия ферментов в живых системах, илах и почве, а в некоторых случаях применяться на практике, некоторые исследователи занимаются изучением адсорбции ферментов, поиском новых, эффективных носителей и т. д. [104, 206]. [c.176]

    В белках возможно существование проводящего электронного пути между донорными и акцепторными группами. Для сложноструктурных катализаторов характерно внутреннее взаимодействие всех атомов. Спектр поглощения пиридин-нуклеотидов резко меняется при сравнительно ничтожных изменениях в одной части молекулы молекулы фталоцианина диамагнитны, т. е. атомы углерода в них, по-видимому, связаны общими электронами в комплексных ионах фотовозбуждение аддендов вызывает появление флуоресцентного спектра центрального иона и т. д. Вместе с этим в белках, в том числе и ферментах, существуют цепи атомов, способные особенно легко передавать энергию возбуждения. Так, экспериментально было показано, что фотохимический акт, происшедший на одном участке длинной цепеобразной молекулы, может привести к химической реакции иа противоположном ее конце. [c.266]

    Строение нуклеиновых кислот. Участие их в синтезе клеточных белков. Синтез белков лежит в основе построения новых клеточных структур. Организмы синтезируют свои собственные гбелки, отличающиеся от белков других видов характером чередования аминокислот. Первичная структура белков определяет многие их биохимические особенности. Изменение чередования аминокислот в молекулах ферментов в некоторых случаях приводит к потере свойств катализатора. Чем же определяется последовательность расположения аминокислот при синтезе белков Для ответа на этот вопрос была выдвинута теория матриц. Согласно этой теории, в клетках имеется нечто подобное типографским матрицам или штампам, каждый из которых штампует белок определенного вида или точнее белок со строго определенным порядком расположения аминокислот в его полипептидной цепи. Роль матриц выполняют нуклеиновые кислоты. Нуклеиновые кислоты имеются во всех без исключения клетках. Различают две группы нуклеиновых кислот—дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). ДНК содержится главным образом в клеточном ядре, РНК — Э ядре и цитоплазме. [c.122]

    Регулировать особенности протекания процесса можно также путем разумного выбора катализатора. Сегодня большие усилия затрачиваются на выделение, изучение свойств и способов использования термофильных микроорганизмов и их ферментов во многих уже применяющи>[ся в промышленности био-катализируемых реакциях. Получаемые при этом преимущества определяются увеличением стабильности белков и их более высокой каталитической активностью. Модернизировать процессы можно и путем применения организмов, обитающих в экстремальных условиях (например, при низких pH или высоких концентрациях солей). Так, для производства органических кислот имеет смысл попытаться использовать ацидофильные гало-филы галофильные виды уже сейчас применяются при выработке полиолов (образование глицерола при участии Dunietta),. [c.186]

    Книга представляет интерес и для биохимиков, которые найдут в ней много свежего материала по сравнительной энзимологии (особенно в том, что касается общих механизмов и особенностей функционирования кислороднереносящих белков и ферментов азотного метаболизма у организмов различного эволюционного уровня), и для химиков, работающих в области катализа комплексами металлов, для которых структуры активных центров ферментов являются образцом при поиске оптималных синтетических катализаторов. [c.6]

    Цель настоящего обзора — рассмотрение путей, по которым белки влияют на реакции комплексов переходных металов, и уточнение некоторых факторов, определяющих повышенную каталитическую активность ферментов и в особенности металлоферментов по сравнению с низкомолекулярными катализаторами. Белок (или ансамбль белков) должен влиять на один или несколько факторов, определяющих общую эффективность каталитического процесса, а именно  [c.135]

    В отличие от фибриллярных белков, которые, как правило, плохо поддаются растворению, глобулярные белки сравнительно легко растворимы. Они выполняют в организме ряд функций участвуют в переносе различных веществ, служат запасными веществами, играют роль биологических катализаторов (ферменты) и т. д. Глобулярные белки могут быть выделены из растворов в кристаллическом виде. На рентгенограммах таких кристаллов наблюдается много резких дифракщшнных максимумов, которые позволяют устанавливать структуру не только повторяющейся структурной единицы, но и особенности строения всей молекулы. Чтобы полностью использовать информацию о структуре крупных молекул, даваемую такими рентгенограммами, необходимо знать значения фаз. Как было указано в гл. XIII, по плотности почернения пятна на пленке можно определить лишь амплитуду соответствующей Фурье-компоненты, пропорциональную корню квадратному из плотности почернения, но не ее фазу. В настоящее время разработан ряд методов, позволяюших решить задачу об определении фаз. В этой главе мы опишем два метода определения фаз и обсудим результаты, полученные для двух белков — миоглобина и гемоглобина. [c.259]

    Биокатализаторы интересны еще и с другой точки зрения реакции, катализируемые ими, протекают с достаточной скоростью при обычных температурах и давлениях многие реакции в присутствии химических катализаторов возможны лишь при высоких температурах, а часто и высоких давлениях. К биокатализаторам указанного действия относятся бактерии, обеспечивающие, например, фиксацию азота воздуха (азотобактеры), выделение железа и окислов железа (железные бактерии), получение серы из сероводорода и других сернистых соединений (серные бактерии), различные превращения углеводородов (нефтяные бакте-рии), образование белков из нефти и т. д. В результате таких процессов получаются продукты, обладающие более высокой энтропией, чем исходные. Происходит это за счет параллельно идущих экзотермических процессов, особенно процессов окисления. Необходимо глубже вникнуть в механизм действия такого рода ферментативных систем, чтобы изыскать возможности восироизведения их с помощью искусственных катализаторов. Пока мы еще не создали таковых, здесь нужны широкие исследования возможностей осуществления промышленных процессов с применением природных ферментов в виде соответствующих бактерий и грибков. [c.19]

    Механизм действия и строение ферментов. Ф. отличаются от небиологич. катализаторов, как правило, количественно более значительной активностью и в особенности высокой специфичностью действия. Обе эти особенности Ф. связаны с их строением и механизмом действия. Различают два основных типа Ф. а) чисто белковой природы б) белковой природы, но требующие для проявления каталитич. активности соединения с низкомолекулярными органич. веществами специального строения — коферментами (в этом случае белковая часть фермента наз. апоферментом). Иногда активность Ф. обоих этих типов связана с наличием в их составе металлич. или иных ионов — т. паз. и о н-ных кофакторов. Структура основных коферментов и механизм нх химич. превращений в ходе ферментативных реакций изучены (см. Коферменты, а также но наименованию отдельных коферментов). Установлено, что коферменты принимают прямое участие в катализируемых реакциях путем переноса определенных химич. группировок, а также электронов и протонов. Однако в отсутствие белка-апофермен-та они либо совершенно неактивны, либо могут осуществлять отдельные стадии реакции с небольшой скоростью (напр., восстановленные никотинамидиые динуклеотиды и их аналоги, см., напр., кодегидрогеназы, способны с небольшой скоростью восстанавливать нек-рые соединеиия). [c.210]

    Однако в характере метаболизма, химическом составе и строении различных тканей и различных организмов имеются и бесспорные различия. Что касается метаболизма, то особенности его в соответствующих органах или тканях, несомненно, определяются набором ферментов. Различия в химическом составе органов и тканей тоже зависят от их ферментного состава, в первую очередь от тех ферментов, которые участвуют в процессах биосинтеза. Не исключено, что и более очевидные различия, касающиеся строения и формы тех или иных органов и тканей, также имеют энзимологическую природу. Известно, что строение и форма находятся под контролем генов контроль осуществляется путем образования специфических белков, из которых главными для организации тканей являются ферменты и транспортные системы. Продуктами генов могут быть также белки, не обладающие каталитическими свойствами, но играющие важную роль в встраивании ферментных белков в соответствующие структурные ансамбли, например мембраны однако такие молекулы можно рассматривать как компоненты катализаторов, поскольку они находятся в теснейшей взаимосвязи с ними. [c.96]

    Функции белков в клетках и в организме в целом очень разнообразны. Белки образуют такой инертный материал, как волос, рог или кость, и из белков же состоит сократимое вещество мышечного волокна. Эти последние белки обладают одной характерной особенностью — способностью превращать химическую энергию в механическую поэтому именно они обусловливают подвижность высших организмов. Точно так же у низших организмов механическое движение (движение жгутиков, координированные удары ресничек, амёбоидное движение) тесно связано с наличием сократимого белка. Касаясь других функций белка, необходимо указать, что ферменты — эти крайне важные для живых организмюв катализаторы, — дыхательные пигменты, гормоны некоторых желез (поджелудочной, щитовидной и гипофиза), антитела и токсины некоторых бактерий представляют собой белки. Из сказанного ясно, что значение белков для живого организма трудно переоценить. [c.6]

    Азот (К ) является важнейшим элементом для развития растений, в частности для образования белковых веществ. Содержание азота в составе белка колеблется в пределах 15—19%. Азот входит в состав хлорофилла и, следовательно, принимает участие в фотосинтезе, а также ферментов — катализаторов жизненных процессов в организме растений и животных. В почву азот поступает в аммиачной, амидной и в нитратной формах эффективность этих форм азота зависит от биологических особенностей растений и содержания в них углеводов. При недостатке углеводов растение не может иопользовать аэот для образования а1Мино1К ислот и белков. [c.10]

    Поскольку активный центр определяет и специфичность и каталитическую активность фермента, ои должен представлять собой структуру определенной степени сложности, приспособленную для тесного сближения и взаимодействия с молекулой субстрата или по крайней мере с теми ее частями, которые нег осред-ственно участвуют в реакции. Первоначально предполггалссь, что в каждой молекуле фермента имеется много активных центров, однако сейчас стало ясным, что в большинстве случаев на каждую молекулу приходится только один или два активных центра. Поверхность любого белка состоит из множества разнородных химических групп, принадлежащих боковым цепям аминокислот. Любая из них может играть в молекуле фермента ту или иную роль, влияя на конформацию фермента и на его взаимодействие с субстратом в силу своих химических особенностей и даже просто своим присутствием (стерический эффект). Значение функциональных групп белка для структуры и каталитического действия ферментов очень многообразно. Атомы кислорода, азота, серы участвуют в образовании водородных связей и комплексов с металлами. Кислые и основные группы в 3 2 Е И С И Г Л ОСТИ от состояния и диссоциации функционируют в активных центрах ферментов в качестве кислотных и основных, нуклео- и электро-фильных катализаторов. Эти группы могут действовать непосредственно на субстрат или изменять своим электростатическим воздействием реакционноспособность соседних групп молекул фермента. Аминные, имндозольные, гидроксильные, тиоловые и некоторые другие группы во многих ферментных реакциях выполняют функции промежуточных акцепторов и переносчиков [c.137]

    Ферментные системы железопорфириновой природы составляют группу эндогенных внутрикомплексных соединений. Особенностью этих катализаторов является очень прочная связь металла с простетической группой и специфическим белком фермента. Однако при катализе железо этих соединений претерпевает обратимые окислительно-восстановительные превращения (Fe2+ Fe +), находясь в каждый данный момент в состоянии низшей валентности, наиболее уязвимом для проявления конкурентных взаимоотношений. [c.244]


Смотреть страницы где упоминается термин Особенности ферментов как белковых катализаторов: [c.7]    [c.7]    [c.26]    [c.22]    [c.332]    [c.137]    [c.137]   
Смотреть главы в:

Биохимия Краткий курс с упражнениями и задачами -> Особенности ферментов как белковых катализаторов




ПОИСК





Смотрите так же термины и статьи:

Особенности катализаторов



© 2025 chem21.info Реклама на сайте