Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Миграция электронного возбуждения, механизмы экситонный

    Вопрос о механизме миграции энергии пока еще слабо выяснен, может быть, за исключением, полупроводниковых тел. Мы точ Ьо не знаем, как мигрирует энергия по большим молекулам, в частности по макромолекулам белка, так же как не ясны формы ее миграции по металлическим поликристаллам. Здесь мы неизбежно вступаем в область лишь более или менее достоверных догадок. В порядке рабочей гипотезы можно думать, что миграция энергии происходит по экситонному. типу, т. е. путем эстафетной передачи зонно-электронного возбужденного состояния по кристаллу от одного активного центра к другому. Принять передачу энергии через колебания самой решетки труднее, так как они слишком легко рассеивал - бы энергию в окружающую среду. Примером электронной активации центра может служить возбуждение палладия, пере водящее его из структуры 4(8 р с1 °). с замкнутой 18-электронной оболочкой в структуру 5 с затратой энергии 0,8 эв (т. е. 18 ккал на атом) и с приобретением двух неспаренных электронов, т. е. двух химических валентностей в этом виде палладий обычно проявляет себя как элемент и как катализатор. [c.58]


    Рассмотрим далее другой возможный механизм миграции энергии электронного возбуждения от решетки твердого тела к адсорбированным молекулам-экситонный. Согласно простейшим представлениям экситон является нейтральным возбужденным состоянием, в котором электрон и дырка образуют связанную пару, которая может мигрировать по решетке кристалла как одно целое. Энергетический спектр экситона является дискретным и уровни энергии лежат несколько ниже дна зоны проводимости (рис. 3.11). На опыте существование экситонов можно наблюдать в ряде случаев по появлению узких линий в спектре кристалла вблизи длинноволновой границы фундаментального поглощения. [c.66]

    Интересное исследование безызлучательной миграции энергии электронного возбуждения в палочках сетчатки лягушек и кроликов было выполнено Хагинсом и Дженнингсом [101]. Одним из наиболее поразительных свойств рецепторов сетчатки позвоночных является их высокая чувствительность по отношению к свету. Фотон зеленого света, поглощенный какой-либо одной из миллионов молекул родопсина в адаптированной к темноте палочке сетчатки человеческого глаза, дает четкий сигнал нервной системе по крайней мере в одном случае из трех. Таким образом, представляется, что почти каждая молекула родопсина прямо связана с чувственным выходом рецептора, в котором она находится. Авторы исследовали возможность применения механизмов переноса экситона и резонансного переноса энергии для объяснения очень малой степени фотодихроизма родопсина в палочках сетчатки. Однако на основании своих измерений поляризации флуоресценции химиката, соответствующего родопсину,— витамина А — и исследования флуоресценции, вызванной ультрафиолетовым облучением отбеленных палочек сетчатки, они пришли к заключению, что эффект, вероятно, полностью обусловлен вращением молекул. Поэтому перенос энергии между молекулами родопсина в сетчатке представляется маловероятным. [c.131]

    Подробное обсуждение механизма переноса энергии между молекулами пигмента в хлоропластах выходит за пределы данной книги. Однако некоторые понятия, широко используемые в литературе по фотосинтезу, заслуживают разъяснения. Б начале 1950-х годов такой перенос энергии связывали обычно с индуктивным резонансом. Считалось, что этот относительно медленный перенос может происходить между слабо связанными друг с другом молекулами в растворе, например между молекулами хлорофилла Ь и хлорофилла а [259] (см. стр. 31). Позже, с развитием физики твердого тела, некоторые исследователи пришли к выводу, что молекулы хлорофилла расположены в двумерной молекулярной кристаллической решетке и ведут себя подобно полупроводнику. В таком случае соседние молекулы должны взаимодействовать так сильно, что их орбитали будут перекрываться. Миграция экситона (представляемого как электрон и положительно заряженная дырка, движущиеся вместе по решетке [187]) должна при этом происходить столь быстро, что приписать этот экситон в любой данный момент какой-либо определенной молекуле не представляется возможным. Арнольд и Шервуд [4] показали, что если высушенные хлоропласты сначала осветить при комнатной температуре, а затем нагреть до 140° С, то они будут излучать свет. Такого рода результаты подтверждают представление о том, что хлоропласты— это система, обладающая свойствами твердого тела. Описанные процессы происходили бы в полупроводнике, если бы часть возбужденных электронов захватывалась дефектами кристаллической решетки, а затем в результате поглощения кванта дальнего красного света освобождалась и попадала обратно в дырки. Аналогичные явления наблюдались в опытах со све-. жими суспензиями hlorella и листьями (по техническим причинам, однако, их не удалось исследовать количественно). Было высказано предположение, что такой же механизм лежит в основе очень слабого послесвечения, наблюдаемого в темноте при нормальной температуре после освещения зеленых тканей [285]. [c.49]



Смотреть страницы где упоминается термин Миграция электронного возбуждения, механизмы экситонный: [c.24]    [c.311]    [c.457]    [c.180]    [c.323]   
Биофизика Т.1 (1997) -- [ c.372 ]




ПОИСК





Смотрите так же термины и статьи:

Миграция

Электронное возбуждение



© 2025 chem21.info Реклама на сайте