Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронное возбуждение

    Сумма состояний электронного возбуждения определяется таким же путем  [c.339]

    Процесс предиссоциации легче всего можно себе представить, рассматривая потенциальные кривые (рис. П,.6) и пользуясь при этом принципом Франка — Кондона. Кривая I в обоих случаях соответствует нормальному состоянию. В результате электронного возбуждения молекула переходит в новое энергетическое состояние, которому соответствует кривая 2. Еще большему запасу энергии соответствует кривая 3. Пока верхний колебательный уровень лежит ниже уровня О, молекула вполне устойчива, и этим переходам соответствуют полосы нормального строения. Начиная с уровня О и выше, в спектре появляются диффузные полосы. Появление их легко понять, если рассмотреть поведение молекулы, энергия колебания которой соответствует точкам, расположенным выше уровня О. Пусть при возбуждении молекула попадает на уровень Е. Колебания ядер молекулы и изменения потенциальной энергии молекулы можно сравнить с движением тяжелого шарика. Шарик, поднятый в точку на кривой 2 и предоставленный самому себе, будет двигаться со все возрастающей скоростью и, пройдя низшую точку потенциальной кривой с максимальной кинетической энергией, поднимется до точки , лежащей на том же уровне, что и точка . При обратном движении, когда шарик попадет в точку С, у него будут две возможности или катиться вниз по прежней кривой, или перейти на кривую 3, не изменив своей кинетической энергии (в соответствии с принципом Франка— Кондона). Если шарик перейдет на кривую 3, то, катясь по ней, он поднимется выше уровня О, поэтому, двигаясь обратно по этой же кривой. [c.68]


    Движение молекул всегда является сложным сочетанием различных движений (поступательного, вращательного, колебательного движений, электронного возбуждения и т. д.). То же относится к энергии молекулы. В простейшем случае отдельные формы движения независимы, т. е. параметры, соответствующие различным формам движения (например, момент инерции для вращения, частота колебания—для колебательного движения и т. д.), имеют постоянные числовые значения, независимые от того, имеются ли одновременно другие формы движения или данное движение является единственным. [c.332]

    Получаемые результаты можно продемонстрировать еще и такой схемой (рис. И, 2). Отложим по вертикали колебательные уровни нормального и возбужденного состояний. Место схождения этих уровней будет соответствовать наибольшей колебательной энергии, которой может обладать молекула в данном состоянии. Все последующие уровни не квантованы, так как молекула распадается на атомы. Эти неквантованные уровни заштрихованы косыми линиями. Если бы молекула, находясь в основном электронном состоянии, могла распадаться на атомы, то энергия ее диссоциации соответствовала бы Охам., совпадающей с величиной энергии, найденной на основании термохимических данных. Но фотохимический распад происходит в результате электронного возбуждения, обусловленного поглощением светового кванта. Энергия, необходимая для распада молекулы под действием поглощенного света, должна соответствовать величине /гv . Это и будет квант, отвечающий месту схождения полос. Энергиям электронного возбуждения молекулы и продуктов ее распада соответствуют величины hve и Нха- Величина О (у) соответствует энергии диссоциации молекулы в возбужденном состоянии. Таким образом, зная электронные уровни возникающих при [c.62]

    Вращательно-колебательно-электронные спектры излучения дают возможность рассчитать частоты колебания и коэффициенты ангармоничности в невозбужденном и в электронно-возбужденном состоянии. Из рис. 9 видно, что разность энергий переходов Ае,, о и Ае,) ] равна разности энергии колебательных квантовых уровней с колебательными [c.14]

    Образование электронно-возбужденных молекул при поглощении кванта энергии  [c.27]

    Для долгоживущих свободных радикалов, таких, как метастабильные, электронно возбужденные молекулы красителей [53] или триарилметилы [54], применимы более прямые методы измерения концентрации с использованием чувствительных весов Гюи. [c.99]

    В других случаях такая электронная энергия должна вырождаться в результате неупругих столкновений в иные формы энергии — обычно колебательную энергию. Как правило, электронные состояния, образующиеся в результате химических реакций, метастабильны , так что можно ожидать, что электронно-возбужденные состояния теряют избыток энергии при столкновении. Редкие случаи разрешенных переходов обусловливают процессы, которые относятся к реакциям хемилюминесценции .  [c.342]


    Еслп весь избыток энергии является поступательной энергией, то она должна распределяться обратно пропорционально отношению масс 127/15 8/1. Это нижний предел того избытка энергии, который получает СН3, так как он также моя-гет иметь энергию колебания и электронного возбуждения. [c.345]

    Выло найдено, что голубые пламена, характерные для горения углеводородов, обусловлены электронно-возбужденными молекулами СНдО. [c.414]

    Успехи в изучении строения молекул и развитие квантовой статистической физики привели к созданию нового метода расчета термодинамических функций и, в частности, химических равновесий. Этот метод дает возможность вычислять значения внутренней энергии (сверх нулевой), энтропии и теплоемкости газообразных веществ в широком интервале температур (до 4000— 6000 °С), исходя из величин энергий всех квантованных состояний молекулы, связанных с ее вращением, колебаниями, электронным возбуждением и другими видами движения. Для вычисления энергии каждого из состояний молекулы необходимо знать молекулярные параметры моменты инерции, основные частоты колебания, уровни электронного возбуждения и др. Эти величины находятся главным образом путем изучения и расшифровки молекулярных спектров. Вычисление же термодинамических величин проводится методами квантовой статистической физики. Здесь будут кратко изложены основы статистического метода расчета термодинамических функций. [c.327]

    Очевидно, что энергия электронного возбуждения одного из атомов иода, возникающего в результате диссоциации молекулы, должна быть равна 2,4— [c.62]

    Энергия электронного возбуждения значительно больше энергии колебательного и вращательного движения, поэтому прн электронном возбуждении происходит возбуждение и колебательного, и вращательного движения. В спектре наблюдается сложная полоса, которую можно объяснить переходами между колебательно-вращательными уровнями нормального и возбужденного электронного состояний (рис. 8). [c.13]

    При бомбардировке молекулы электронами возможны различные процессы ионизации и диссоциации. До сих пор нет теории, которая позволила бы рассчитать вероятность того или иного процесса возбуждения молекулы или ее распада. Столкновение электронов, обладающих низкой энергией, с молекулами приводит обычно к переходу молекулы на более высокие вращательные, вибрационные или электронные энергетические уровни. При повышении скорости движения электронов наступает момент, когда энергия ударяющего электрона оказывается достаточной для ионизации молекулы. При дальнейшем повышении энергии электронов возбуждение ионизированной молекулы может привести к диссоциации, в результате которой появляются ионы с меньшей массой, а также нейтральные осколки молекулы. Потенциал, соответствующий наименьшей энергии электронов, при которой в результате столкновения электрона с молекулой происходит диссоциация молекулы с образованием ионов, носит название потенциала появления. [c.76]

    Переход кинетической энергии поступательного движения электрона в энергию электронного возбуждения атома или [c.74]

    Исходя из классических представлений, переход кинетической энергии поступательного движения электрона в энергию электронного возбуждения атома или молекулы можно рассматривать как неупругий удар. Удар, при котором энергия поступательного движения будет переходить во внутреннюю энергию, является неупругим. При неупругом ударе деформация соударяющихся тел увеличивается до тех пор, пока скорости их не станут одинаковыми (т. е. Ц1 = и2 = и), после чего шары перестанут давить друг на друга и будут двигаться вместе. [c.74]

    Доля Э кинетической энергии, переходящей во внутреннюю энергию молекулы (энергия электронного возбуждения) [c.74]

    И если при этом первая частица — электрон, а вторая — молекула, то т1<Ст2 и, следовательно, при неупругом ударе р=1, т. е. вся энергия электрона может целиком перейти в энергию электронного возбуждения атома или молекулы. Опыт показывает, что такой переход подчинен квантовым законам. Он возможен только тогда, когда энергия ударяющего электрона равна той энергии, которая необходима для перевода электрона в молекуле из заданного в любое другое состояние, разрешенное квантовыми условиями отбора. Столкновения между электронами и атомами или молекулами, которые ведут к возбуждению атомов или молекул за счет кинетической энергии электронов, называются ударами первого рода. Франк и Герц исследовали столкновения электронов с атомами и на основании результатов исследований разработали удобные методы определения резонансных, критических и ионизационных потенциалов атомов. [c.75]

    Разность (А( -2.л — Ае, ,), сложенная с разностью (Ае, о — Аг ), равна разности энергий уровней и = 2 и у = О в электронно-возбужденном состоянии. Это дает возможность определять со, и х. По частоте колебания и коэффициенту ангармоничности можно рассчитать энергию химической связи. [c.15]

    Диссоциация молекул на нагретых поверхностях может происходить по двум совершенно различным причинам I) в результате передачи энергии электронного возбуждения поверхностных атомов и молекул молекулам, ударяющимся о поверхность, и 2) вследствие уменьшения энергии диссоциации адсорбированных молекул на атомы. [c.82]

    Таким образом, по теории энергетического катализа, значительную роль в образовании химически активных частиц в разряде (в приведенных выше примерах — свободных атомов) могут играть электронно возбужденные атомы и молекулы, главным образом, вероятно, в метастабильном состоянии. Аналогия с катализом состоит в том, что сами электронно возбужденные состояния непосредственно в акте химического взаимодействия не участвуют, а служат лишь передатчиками энергии от электронного газа плазмы разряда к активируемым молекулам, облегчая, таким образом, образование активных комплексов. В приведенных примерах роль энергетических катализаторов играют атомы и молекулы добавок. Аналогичные функции могут выполнять и электронно возбужденные участники реакции, передавая энергию при ударах второго рода молекулам, себе подобным, или молекулам других участников реакции. Например, при синтезе аммиака возможен процесс [c.256]


    Определение частоты колебания, коэффициента ангармоничности и энергии химической связи в электронно-возбужденном состоянии N [c.69]

    Все рассмотренные выше реакции представляют собой мономолекулярные процессы распада. Генерация ионов в ходе электронной бомбардировки часто приводит к потере наименее прочно удерживаемого электрона, и ионы часто образуются в колебательно возбужденных состояниях с избытком внутренней энергии. В некоторых молекулах образца происходит потеря низкоэнергетического электрона, что приводит к иону в электронно возбужденном состоянии. Ион в возбужденном состоянии может подвергаться внутренней конверсии энергии, в результате чего он переходит в основное электронное состояние с избытком колебательной энергии. Молекула может диссоциировать в любое из возбужденных состояний, участвующих во внутренних конверсиях с безызлучательным переносом энергии. В этом случае ион фрагментирует, как только он начинает колебаться. Таким образом, в данном образце получаются ионы с широким энергетическим распределением, и фрагментация может происходить по различным механизмам. Полезно рассмотреть временные шкалы для некоторых обсужденных процессов. Время одного валентного колебания составляет 10 с, максимальное время жизни возбужденного состояния — около 10 с и время, которое ион проводит в ионизационной камфе масс-спектрометра, равно 10 —10 с. Следовательно, для перехода иона с избыточной электронной энергией в более низкое электронно возбужденное состояние с избытком колебательной энергии времени вполне хватает. Поэтому мы наблюдаем процессы в ионизационной камере через регистрируемые молекулярные ионы в различных энергетических состояниях, которые подвергаются быстрой внутренней конверсии энергии, образуя индивидуальные ионы с различным количеством избыточной энергии. Фрагментация протекает по первому порядку с различными [c.319]

    Формально реакция 7 аналогична реакции 6 и является реакцией зарождения. Фактически, однако, она гораздо более эндотермична, и, так как скорость кТ крайне ничтожна ( Г <С Аб ), не является настоящей реакцией зарождения, а ее роль весьма незначительна при инициировании процесса во всем диапазоне исследованных параметров Т (800-2000) К, Р (10-2-20) ат, а (0,1-10,0). Теоретический расчет коэффициентов /с/ проводится так же, как и для реакции 6 [32, 142]. Однако в силу более сложного электронного строения исходных реагентов и активированного комплекса здесь необходимо учитывать вращательные состояния и электронное возбуждение, что особенно важно при высоких температурах. Эти обстоятельства обусловливают возможное увеличение [c.268]

    В приближении замороженных МО орбитальные энергии имеют определенный физический смысл, и соотношение (73) позволяет сопоставлять найденные из опыта потенциалы ионизации или их последовательность с расчетными. Иногда согласованность имеет место если не в численных значениях, то по крайней мере в их относительном порядке. Но чаще всего этого нет во многих соединениях перестройка (или, как еще говорят, релаксация) МО происходит и при ионизации, и при электронных возбуждениях, [c.188]

    ОДНОВРЕМЕННЫЕ ПАРНЫЕ ЭЛЕКТРОННЫЕ ВОЗБУЖДЕНИЯ [c.118]

    Идеи, изложенные в настоящей главе и гл. 5, имеют важное значение не только при рещении структурных задач с электронными переходами связаны явления флуоресценции и фосфоресценции. В фотохимических реакциях участвуют электронно возбужденные молекулы, и для того, чтобы разобраться с механизмами этих реакций, необходимо иметь представление о структуре и реакционной способности возбужденных частиц. В некоторых случаях синглет-триплетное возбуждение молекул приводит к образованию реакционноспособных радикалов. Часто молекулы, не способные к образованию комплекса, находясь в основном состоянии, приобретают такую способность, если одна из молекул возбуждена (такой комплекс называется эксиплексом). Таким образом, идеи, касающиеся электронных переходов, изложенные в настоящей главе и гл. 5, важны для многих областей. [c.123]

    Для химической формы движения, т. е. для химического процесса, характерно изменение числа и расположения атомов в молекуле реагирующих веществ. Среди многих физических форм движения (электромагнитное поле, движение и превращения элементарных частиц, физика атомных ядер и др.) особенно тесную связь с химическими процессами имеет внутримолекулярная форма движения (колебания в молекуле, ее электронное возбуждение и ионизация). Простейший химический процесс—элементарный акт термической диссоциации молекулы имеет место при нарастании интенсивности (амплитуды и энергии) колебаний в молекуле, особенно колебаний ядер вдоль валентной связи между нимн. Достижение известно критической величины энергии колебаний по направлению определенной связи в молекуле приводит к разрыву этой связи и диссоциации молекулы на две части. [c.17]

    Слагаемое R Ingo, связанное с электронным возбуждением, вводится дополнительно к уравнению (X, 32). Об электронном возбуждении см. уравнение (X, 41) на стр. 339. [c.336]

    Такое несоответствие между спектроскопическими и термохимическими данными объясняется тем, что, например, двух.атомная молекула распадается под действием света на один нормальный и один возбужденный атом, В том, что это действительно так, можно убедиться, рассмотрев потенциальные кривые нормального и возбужденного состояния. Из рис. II, 1 видно, что энергия Охим., необходимая для расщепления молекулы на два невозбужденных атома, меньше, чем энергия, затрачиваемая на фотохимическую диссоциацию, равная А(у) +0(у). Это объясняется тем, что при фотохимической диссоциации происходит сначала электронное возбуждение молекулы, затем возбужденная молекула может оказаться в состояниях с энергией, большей, чем энергия диссоциации в возбужденном состоянии, вследствие чего происходит ее распад на атомы. Таким образом, из кри- [c.61]

    Имеются случаи, когда роль свободного радикала играет ион, например ион N2 —бнрадикал. Тогда уже первичный процесс ионизации электронным ударом ведет к возникновению радикала. Согласно упоминавшейся теории энергетического катализа, значительную роль в реакциях, протекающих в разрядах, играют так называемые удары второго рода, в результате которых энергия электронного возбуждения одного из партнеров в соударении превращается в иной вид энергии другого партнера. Примером удара второго рода в разряде может служить процесс, наблюдающийся при разряде в смеси аргона и кислорода [c.254]

    Еще один случай сенсибилизации реакции в разряде, а именио увеличение выхода озона в присутствии азота, был рассмотрен в 6 дайной главы. Роль энергетического катализатора играет, вероятно, электронно возбужденная молекула азота в метастабильном состоянии (Н ), и процесс образования озона можно представить следующим образом  [c.256]

    Чгтмре нсспарспных электрона возбужденного атома могут участвовать и образовании четырех ковалентных свя" сн по обыч-ному механизму с атомами фтора имеющими по од- [c.56]

    Электронное возбуждение молекул. Электронные спектры. Электроны в двyxaтo нrыx молекулах можно разделить на электроны, находящиеся [c.11]

    Возникающая в результате образования молекулярных орбиталей комплекса диаграмма энергетических уровней изображена на рис. 20-14. В ее нижней части находятся уровни шести связывающих орбиталей, заполненные электронными парами. Их можно пр)едставить как шесть электронных пар, поставляемых лигандами-донорами, и больше не обращать на них внимания. Точно так же можно исключить из рассмотрения четыре верхние разрыхляющие орбитали, являющиеся пустыми, за исключением предельных случаев сильного электронного возбуждения, которыми можно пренебречь. Несвязывающий уровень и нижний разрыхляющий уровень соответствуют двум уровням, и вд, к которым приводит расщепление кристаллическим полем (см. рис. 20-13). Мы будем продолжать называть их по-прежнему уровнями 12д и е даже в рамках молекулярно-орбитального подхода. Но важно отметить разницу в объяснении расщепления между этими уровнями. В теории кристаллического поля оно является следствием электростатического отталкивания, а в теории поля лигандов-следствием образования молекулярных орбиталей. Как мы убедились в гл. 12 на примере молекул НР и КР, теория молекулярных орбиталей позволяет охватить все случаи от чисто ионной до чисто ковалентной связи. Поэтому выбор между теорией кристаллического поля и теорией поля лигандов основан лишь на рассмотрении одной из двух предельных моделей связи. В комплексе СоР довольно заметно проявляется ионный характер связи, потому что, как можно видеть из рис. 20-14, орбитали лигандов располагаются по энергии ниже орбиталей металла и ближе к связывающим молекулярным орбиталям. Поэтому связывающие молекулярные орбитали по характеру должны приближаться к орбиталям лигандов, а это должно обусловливать смещение отрицательного заряда в направлении к лигандам. Таким образом, связи в данном случае должны быть частично ионными. [c.235]

    Движущей силой цикла Кальвина - Бенсона являются световые реакции. Солнечный свет поглощается молекулами хлорофилла (см. рис. 20-21), в которых имеется кольцо сопряженных атомов углерода с делокализованными электронами, окружающее атом магния. Молекула хлорофилла одного типа расположена в фотоцентре, или в ловушке, где и осуществляется химическая реакция, а другие хлорофиллы и родственные сопряженные молекулы окружают фотоцентр и играют роль антенн , поглощающих фотоны света и передающих электронное возбуждение к молекулам фотоцентра. [c.336]

    В квантоБомеханическом рассмотрении реакция 5 протекает аналогично реакции 4 и представляет собой атаку и отрыв радикалом О атома Н от исходной молекулы. Поскольку, однако, исходная молекула НаО имеет более сложное строение, чем На, не приходится говорить о линейной структуре переходного состояния, и опшбки, обусловленные незнанием геометрии комплекса, могут достигать разброса на уровне (800- -1000)%. Более аккуратный учет деталей взаимодействия (учет дополнительного спинового отталкивания, электронного возбуждения, использование более точных значений энергий диссоциации и спектроскопических данных по длинам связей и т. д.) может понизить разброс ошибки до (300- 400)%, который также нельзя признать удовлетворительным. [c.260]

    Тот факт, что переходы, разрешенные по мультиплетности, обычно дают широкие линии, в то время как переходы, запрещенные по мультиплетности.— узкие, может помочь отнесению полос в спектре. Разрешенные по мультиплетности переходы -> приводят к возбужденному состоянию, в котором равгювесное межъядерное расстояние между ионом металла и лигандом больше, чем в основном состоянии. При электронном переходе межъядерное расстояние меняться не должно (принцип Франка—Кондона), поэтому электронно возбужденные молекулы находятся в колебательно возбужденных состояниях, в которых длины связей соответствуют основному состоянию. Взаимодействие возбужденного состояния с молекулами растворителя, нахоляши-мися не в первой координационной сфере, меняется, так как при образовании возбужденного состояния ближайшие молекулы растворителя удалены от нона металла на различные расстояния. Поскольку растворитель не может реорганизоваться за время перехода, данное возбужденное колебательное состояние различных молекул взаимодей- [c.88]


Смотреть страницы где упоминается термин Электронное возбуждение: [c.415]    [c.339]    [c.71]    [c.137]    [c.15]    [c.69]    [c.402]    [c.258]    [c.91]    [c.120]    [c.141]   
Смотреть главы в:

Разрушение полимеров -> Электронное возбуждение

Приложения абсорбционной спектроскопии органических соединений -> Электронное возбуждение

Молекулярная фотохимия -> Электронное возбуждение

Приложения абсорбционной спектроскопии органических соединений  -> Электронное возбуждение

Возбужденные частицы в химической кинетике -> Электронное возбуждение


Основы и применения фотохимии (1991) -- [ c.13 ]

Радиохимия и химия ядерных процессов (1960) -- [ c.351 ]

Фото-люминесценция растворов (1972) -- [ c.16 ]

ЭПР Свободных радикалов в радиационной химии (1972) -- [ c.258 ]

Химическая кинетика и катализ 1985 (1985) -- [ c.90 , c.94 ]




ПОИСК





Смотрите так же термины и статьи:

Алкилгалогениды потенциал ионизации и электронного возбуждения

Амины алифатические потенциалы ионизации и электронного возбуждения

Атомы возбуждение электронов

Безызлучательный перенос электронной энергии Сенсибилизованная фосфоресценция органических молекул при низкой температуре. Межмолекулярный перенос энергии с возбуждением триплетного уровня. (Совместно с В. Л. Ермолаевым)

Бинарные смеси энергии электронного возбуждения

Величины, связанные с энергией молекулярной системы полная электронная энергия, потенциал ионизации, сродство к электрону, энергии возбуждения

Влияние электронного возбуждения на реакции, контролируемые орбитальной симметрией

Возбуждение атома при столкновениях электронами

Возбуждение атомов и молекул электронным ударом

Возбуждение атомов и молекул электронным ударом. Функция возбуждения

Возбуждение атомов при соударениях с электронами

Возбуждение в пределах одного электронного уровня

Возбуждение в результате соударения с электронами

Возбуждение валентных электроно

Возбуждение двух электронов

Возбуждение двух электронов. Эквивалентные электроны

Возбуждение и дезактивация электронных уровней при столкновениях тяжелых частиц

Возбуждение колебаний и вращения молекул электронным ударом

Возбуждение электронами

Возбуждение электронных уровней

Возбуждение электронных уровней молекул и атомов электронным ударом

Возбуждение, ионизация и диссоциация молекул при электронном ударе

Дезактивация электронного возбуждения, пути

Дополнительные материалы по вопросу о передаче энергии электронного возбуждения Давыдов. К вопросу о миграции энергии

Ионизация и возбуждение при неупругих соударениях первого рода электронов с частицами газа

Ионизация и возбуждение при неупругих столкновениях первого рода электронов с частицами газа

Каплан, М. Д. Г аланин. Об электромагнитном механизме переноса энергии электронного возбуждения при радиолизе разбавленных растворов

Концентрация термическом возбуждении электронов

Критическая толщина образца при электронном возбуждении

МЕХАНИЗМЫ ВОЗБУЖДЕНИЯ ЭЛЕКТРОННЫХ УРОВНЕЙ В НЕРАВНОВЕСНОЙ ПЛАЗМЕ

Механизм возбуждения электронно-колебательных уровней молекул азота в тлеющем разряде и его послесвечении

Миграция электронного возбуждения, механизмы

Миграция электронного возбуждения, механизмы индуктивно-резонансный

Миграция электронного возбуждения, механизмы обменно-резонансный

Миграция электронного возбуждения, механизмы экситонный

О переносе энергии электронного возбуждения в жестких растворах органических люминофоров. Я А. Терской, В. Г. Брудзь

Образование связи в водородной молекуле. Электронные конфигурации атомов элементов I и II периодов периодической системы Возбуждение валентности и гибридизация электронов. Q-связн

Одновременные парные электронные возбуждения

Передача электронного возбуждения в сложных системах

Передача энергии возбуждения электронов

Переход кинетической энергии поступательного движения в энергию электронного возбуждения

Поляризуемость на возбуждение электронных

Превращения энергии электронного возбуждения при молекулярных столкновениях

Спирты алифатические потенциал ионизации и электронного возбуждения

Сумма состояний электронного возбуждения

Трансмиссионный коэффициент. Реакции, протекающие с электронным возбуждением. Адиабатические и неадиабатические процессы

Флуоресцентное возбуждение рентгеновских лучей электронами

Характеристический спектр возбуждение электронами

Электрон переходы прн возбуждении молеку

Электронное возбуждение атомов и молекул

Электронное возбуждение в бимолекулярных обменных реакциях

Электронное возбуждение в реакциях атомарной рекомбинации третьего порядка

Электронные облака изменение формы при возбуждении

Электронные уровни атома. Принцип Паули. Правило возбуждения валентностей

Элементарные электронное возбуждение

Энергия возбуждения электронов

Энергия также по фамилиям, например, Гельмгольца энергия возбуждения электрона

Энергия электронного возбуждения

Энергия электронного возбуждения атома



© 2025 chem21.info Реклама на сайте