Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дефекты кристаллической решетк

    Для процессов диффузии и протекания реакций в твердых телах решающее значение имеет наличие и возникновение дефектов кристаллической решетки. Известно, что реакционная способность реальных кристаллов тем выше, чем больше энергия их решетки отличается от энергии решетки идеального кристалла. В совершенной кристаллической решетке массопередача, необходимая для осуществления реакции в твердой фазе, практически невозможна. [c.207]


    Дефекты кристаллической решетки 339 [c.339]

    Поверхность адсорбента (катализатора) может быть неоднородной, на ней могут быть трещины, дефекты кристаллической решетки. Неоднородность структуры поверхности может обусловить энергетическую неоднородность катализатора. Поэтому различают адсорбенты и катализаторы с энергетически однородной и энергетически неоднородной поверхностью. На энергетически неоднородной поверхности переход физически адсорбированной молекулы с одного участка поверхности на другой может быть связан с преодолением некоторого энергетического барьера (локализованная адсорбция). Физическая адсорбция на энергетически однородной поверхности является нелокализованной адсорбцией. [c.638]

    В любом идеальном кристалле при температуре выше абсолютного нул [ как в объеме, так и на поверхности имеется термодинамически равновесное количество дефектов кристаллической решетки  [c.337]

    Одним из главных вопросов любой теории гетерогенного катализа является вопрос о модели активного центра на поверхности катализатора. Впервые представление об активном центре было развито Тейлором. По Тейлору, поверхность катализатора не является идеальной, ровной поверхностью. На ней могут быть трещины, ребра, дефекты кристаллической решетки. Энергетические свойства разных участков поверхности могут сильно различаться. Каталитически активными центрами может быть небольшая часть дефектов поверхности. Причиной каталитической активности Тейлор считал ненасыщенность связей в атомах, находящихся в активном центре. По Тейлору, активными центрами являются пики , вершины на поверхности катализатора. [c.655]

    Дефекты кристаллической решетки 341 [c.341]

    ДЕФЕКТЫ КРИСТАЛЛИЧЕСКОЙ РЕШЕТКИ [c.166]

    Обычно все виды дефектов кристаллической решетки уменьшают прочность металла. Под прочностью понимают свойство материала в определенных условиях воспринимать приложенные нагрузки не разрушаясь. Металлические кристаллы, лишенные дислокаций, обладают весьма высокой прочностью. Такими кристаллами являются выраш иваемые в особых условиях нитевидные кристаллы или усы . Их прочность во много раз превышает прочность обычных образ- [c.325]

    Дефекты кристаллической решетки [c.158]

    Дефекты кристаллической решетки и модель активной поверхности в теориях гетерогенного катализа [c.339]

    Дефекты кристаллической решетки могут сводиться к смещению узловых частнц в междоузлия, при этом отдельные узлы решетки остаются незанятыми (образование так называемых вакансий) и в решетку могут внедряться инородные частицы, располагающиеся либо в узлах, либо в междоузлиях. Дислокации и плоские дефекты у реальных кристаллов весьма существенно влияют на механические свойства твердых материалов. [c.72]


    Уравнение (262) в общем можно применять для качественной оценки некоторых факторов, оказывающих влияние на процесс зародышеобразования, однако для сложных процессов уравнение непригодно. Это объясняется тем, что рост кристаллов определяется не только диффузионными процессами, происходящими в жидкой фазе, но также свойствами структуры растущих кристаллов, как, например, дефектами кристаллической решетки, внедрением в нее ионов из добавляемых растворов и т. д. [c.202]

    Дефекты кристаллической решетки снижают энергию активации диффузии и способствуют ее протеканию. [c.208]

    Влияет на спекание и скорость повышения температуры. Как показал Гегузин, это обусловлено тем, что при более медленном повышении температуры происходит постепенное исчерпывание дефектов кристаллической решетки. Вот почему вклад этих дефектов в ускорение спекания снижается. С увеличением скорости нагрева значительная часть дефектов сохраняется до высоких температур и интенсифицирует процесс спекания. Эффект ускорения спекания при увеличении скорости нагрева проявляется не только на кристаллических порошках, но и при спекании кварцевого стекла. [c.210]

    Наличие мест анодного и катодного характера на поверхности железа приводит к созданию на ней двух неодинаковых химических окружений. Они могут возникнуть вследствие наличия примесей или дефектов кристаллической решетки (по-видимому, обусловленных напряжениями внутри металла), В местах, где имеются такие примеси или дефекты, микроскопическое окружение конкретного атома железа может вызвать некоторое увеличение или уменьшение его степени окисления по сравнению с нормальными положениями в кристаллической решетке. Поэтому такие места способны играть роль анодов или катодов. Сверхчистое железо, в котором количество подобных дефектов сведено к минимуму, намного меньше корродирует по сравнению с обычным железом. [c.231]

    В результате адсорбции ПАВ по местам дефектов кристаллической решетки (микротрещин, зародышевых трещин, границ зерен в поликристаллических материалах) облегчаются деформация и разрушение любых твердых материалов. Адсорбция ПАВ уменьшает поверхностную энергию и тем самым облегчает образование новых поверхностей при разрушении материалов. [c.315]

    Дефекты кристаллической решетки — это нарушения периодичности строения кристалла, т. е. нарушение периодичности пространственного расположения атомов в зоне дефекта. Эти дефекты на электронно-микроскопическом изображении видны в результате явления дифракционного контраста. Различная дифракция электронов ка дефектном и недефектном участках кристалла (более сильная или менее сильная) приводит к разной освещенности соответствующих его зон и, как следствие этого, к появлению контраста. Характер контраста зависит не только от природы дефек- [c.156]

    ИССЛЕДОВАНИЕ ДЕФЕКТОВ КРИСТАЛЛИЧЕСКОЙ РЕШЕТКИ [c.156]

    Истинно-твердые тела (кристаллы) по современным воззрениям, также обладают свойствами коллоидных систем, вследствие существования дефектов кристаллической решетки различного рода в реальных телах средние расстояния между дефектами близки к размерам коллоидных частиц и механические свойства реальных кристаллов определяются в значительной степени структурой дефектов. [c.254]

    Пассивационные и концентрационные эффекты играют важную роль в процессах роста кристаллов, однако они не исчерпывают всех причин, вызывающих отклснение реальной картины кристаллизации от идеализированной модели Фольмера. Отклонения от модели Фольмера объясняются и нарушениями идеальной структуры кристалла, т. е. дефектами кристаллической решетки, и в первую очередь появлением участков с расположением структурных элементов, отличным от их расположения в идеальной решетке данного кристаллического тела, так называемых дислокаций. [c.338]

    Далее кратко рассмотрим основные механизмы образования микротрещин, которые можно подразделить на дислокационные, диффузионные и в результате межзерен-ного сдвига. Дислокационные механизмы могут быть разделены на три группы. К первой группе относятся модели (Зинера, Стро, Коттерелла, Гилмана и др.), связывающие инициированные микротрещины со скоплением дислокаций в плоскостях скольжения. Эти скопления возникают в результате остановки движущихся дислокаций в различных барьерах, которыми являются границы зерен с большими углами разориентировки, включения, поля напряжений. Вторая группа моделей предполагает образование микротрещин в результате скопления дислокаций в окрестностях пересечения систем элементарных актов пластической деформации путем скольжения и двойникования (модель Коттерелла). В соответствии с концепциями моделей третьей группы микротрещины инициируются в результате взаимодействия дефектов кристаллической решетки при пластическом деформировании. Эта группа -барьерные механизмы, описывающие процесс развития трещин в результате объединения цепочек вакансий в движущихся дислокациях со ступенькой пересечение малоугловых границ аннигиляции дислокаций в близко расположенных плоскостях скольжения возникновения поля растягивающих напряжений от двух дислокационных скоплений противоположного знака. [c.86]

    Процесс образования дефектов кристаллической решетки, конечно, эндотермический, но, как и всякое разупорядочение, сопровождается возрастанием энтропии. Поэтому в согласии с AG = Д/У — TAS при любог температуре, отличной от абсолютного пуля, в реальном кристалл должны существовать дефектные позиции пли вакансии. В области гомогенности свойства соединений переменного состава (энтальпия и энергия Гиббса образования, энтропия, электрическая проводимость и пр.) изменяются непрерывно. Например, для нитрида циркония энтальпия и энергия Гиббса образования имеют следующие значения (кДж/моль)  [c.261]


    Описание физико-химических явлений, составляющих гетерогенно-каталитический процесс в порах катализатора, опирается на рассмотренную классификацию геометрических моделей пористых сред, в частности на иерархичность их строения, в которой выделяются несколько уровней организации пористой структуры 1) молекулярная и субмолекулярная структура катализатора — плотность и характер расположения активных центров, дефектов кристаллической решетки, кристаллическое строение, состояние поверхности 2) поровая структура — форма нор, связность порового пространства, суммарная внутренняя поверхность, распределение пор по размерам 3) зерновой (гранулометрический) состав катализатора — текстура катализатора, форма частиц катализатора, распределение зерен по размерам и по объемам  [c.139]

    В области низких температур кристаллы стехнеметрического состава стремятся к идеально упорядоченному состоянию, но часто не могут достигнуть его по кинетическим причинам. При повышении температуры отклонения от упорядоченной структуры увеличиваются, т. е. возрастает число дефектов кристаллической решетки. Самый факт существования кристаллов нестехиометри-ческого состава может быть истолкован, только если допустить в них наличие разупорядоченности. [c.35]

    Прочность металлов в среднем на два порядка меньше теоретической прочности бездефектного кристалла сТтеор (сгтеор 0,1 Е). Такое различие обусловлено тем, что термодинамически вероятно наличие в металле достаточно высокой плотности дефектов кристаллического строения еще до деформации. Пластичность - как свойство подвергаться остаточному формоизменению - реализуется при деформации путем скольжения (трансляционного и зернограничного) и двойникования структурных элементов. Причем процесс скольжения не является результатом одновременного смещения атомов соседей. Процесс скольжения осуществляется путем последовательного смещения отдельных групп атомов в областях с искаженной решеткой. Нарушение кристаллической ре-ше йси означает, что их атомы выведены из положения минимума потенциальной энергии. Поэтому для их смещения требуется меньше энергии и напряжения. Наиболее распространенными дефектами кристаллической решетки являются линейные дефекты - дислокации (винтовые и краевые). Под действием приложенных напряжений про- [c.77]

    Кристаллическая решетка солеи, оксидов, гидроксидов, находящихся в твердом состоянии, состоит из ионов. Последние совершают тепловые колебания окато определенных точек решетки, называемых узлами. Однако в строении реальных ионных кристаллов имеются дефекты, заключающиеся в том, что часть ионов расположена не в узлах решетки. Различают два вида дефектов кристаллической решетки. Один вид дефектов заключается в наличии иона между узлами решетки и на некотором расстоянии от этого иона незанятого места ( дырки ) [c.464]

    Деформирование стали в упругой области увеличивает пронвливвелле-через сталь электролитически выделяемого водорода, а пластическая деф нааи затормаживает этот процесс. При высоких температурах возможен иной характер влияния напряжений и пластической деформации на водородопроницаемость. Дефекты кристаллической решетки, являющиеся ловушками для водорода при низких температурах, в области высоких температур могут увеличивать во-дородопроницаемссть. [c.248]

    В реальных условиях процесс электрохимической кристаллизации осложняется наложением пассивационных явлений, дефектами кристаллической решетки, особенностями образования поликристаллическнх осадков, у которых грани отдельных кристаллов растут с неодинаковой скоростью. Это приводит к возникновению кристаллических пакетов , усов , дендритов . Значительно возрастает перенапряжение при адсорбции поверхностно-активных веществ, что приводит к получению мелкокриеталлических осадков. [c.138]

    Идеальный кристалл рассматривается как тело, построенное из атомов, расположенных строго по законам симметрии кристаллической решетки. В реальных веществах существует непрерывный переход от идеально правильного в геометрическом и физическом смысле кристалла к телам с полностью неупорядоченным расположением атомов — аморфным или стеклообразным. Идеальный кристалл, как и аморфное тело с полностью неупорядоченной структурой, является крайним членом этого ряда. Практически всегда имеют дело с промежуточными членами его. Часть реальных кристаллов примыкает к почти идеальным, степень неупорядоченности которых незначительна. Реальные аморфные тела в свою очередь сохраняют некоторую степень упорядоченности. Отклонения в строении реального кристалла от идеализированного с геометрически правильным расположением атомов называются дефектами кристаллической решетки. Дефекты оказывают большое влияние на свойства реальных кристаллов, а во многих случаях обусловливают проявление особых свойств, которые не присупхи кристаллам со структурой, близкой к бездефектной. [c.166]


Смотреть страницы где упоминается термин Дефекты кристаллической решетк: [c.143]    [c.252]    [c.149]    [c.16]    [c.35]    [c.35]    [c.53]    [c.369]    [c.43]    [c.323]    [c.106]    [c.76]   
Химия (1986) -- [ c.110 ]

Физико-химический анализ гомогенных и гетерогенных систем (1978) -- [ c.218 ]

Физикохимия неорганических полимерных и композиционных материалов (1990) -- [ c.33 , c.120 , c.166 , c.170 ]




ПОИСК







© 2025 chem21.info Реклама на сайте