Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мутаций разные кодоны

Рис. 9.15. Пары БУ—А и БУ—Г. тем, что мы не знаем, какой вырожденный кодон находится в данном месте ДНК. Однако определение аминокислотного состава ряда ревертантов амбер-мутантов (т. е. результатов мутаций, приводящих к бессмысленному кодону УАГ) в белке головки фага Т 4 показало, что замены пар оснований в различных локусах цистрона происходят с разными вероятностями [143]. Мутации ЦАА-)-УАА в локусе г II фага Т4 индуцируются ЫНгОН с частотами, меняющимися в 20 раз в зависимости от локуса ДНК [144]. Сходные факты обнаружены при ультрафиолетовой реверсии этих мутаций [145]. Все приведенные выше факты могут объясняться и тем, что вероятности мутаций внутри цистрона зависят от направления репликации гена, близости контрольных, регулирующих элементов и т. д. Однако Кох получил прямые доказательства влияния соседних пар оснований на мутагенез [146]. Рис. 9.15. Пары БУ—А и БУ—Г. тем, что мы не знаем, какой вырожденный кодон находится в данном месте ДНК. Однако <a href="/info/566223">определение аминокислотного</a> состава ряда ревертантов амбер-мутантов (т. е. <a href="/info/1355385">результатов мутаций</a>, приводящих к <a href="/info/166585">бессмысленному кодону</a> УАГ) в <a href="/info/489895">белке головки</a> фага Т 4 показало, что замены пар оснований в <a href="/info/1394531">различных локусах</a> цистрона происходят с разными вероятностями [143]. Мутации ЦАА-)-УАА в локусе г II фага Т4 индуцируются ЫНгОН с частотами, меняющимися в 20 раз в зависимости от локуса ДНК [144]. Сходные факты обнаружены при ультрафиолетовой реверсии этих мутаций [145]. Все приведенные выше факты могут объясняться и тем, что <a href="/info/1421318">вероятности мутаций</a> внутри цистрона зависят от <a href="/info/33133">направления репликации</a> гена, близости контрольных, <a href="/info/64928">регулирующих элементов</a> и т. д. Однако Кох получил <a href="/info/1389894">прямые доказательства</a> <a href="/info/157123">влияния соседних</a> пар оснований на мутагенез [146].

    Всеобщая применимость постулата о том, что замены отдельных аминокислот возникают в результате одиночных замещений нуклеотидов, очевидна из следующих рассуждений. Если общее число замен одной аминокислоты (или бессмысленного кодона) на другую, которые можно вообразить, составляет 21-20 = 420, то структура генетического кода допускает возникновение лишь 170 таких замен в результате замещений одиночных нуклеотидов. Как показано в табл. 28, к 1967 г. было обнаружено 70 типов таких замен у мутантов по самым разным белкам. Более того, эти 70 типов включают подавляющее большинство всех обнаруженных замен аминокислот, и те несколько случаев, в которых для замены аминокислоты требовалось замещение двух или более нуклеотидов, могут быть легко объяснены двойными мутациями. [c.442]

    В кодирующей области гена полиморфизм тоже регистрируется. Известно, что генетический код-вырожденный (табл. 2.12), т. е. несколько триплетов кодируют одну и ту же аминокислоту (см. рис. 4.45). Анализ двух различных замен в 67-м положении цепи р-глобина (рис. 4.45) показал, что два индивида, у которых произошли мутации, и появились новые формы гемоглобина, должны были различаться по исходным триплетам, кодирующим валин в 67-м положении (рис. 4.45). Таким образом, у разных индивидов различные кодоны могут кодировать одну и ту же аминокислоту. [c.81]

    Что касается тихих мутаций класса б, то они играют существенную роль в эволюции. Кодирование одной и той же аминокислоты разными кодонами оказывается свойственным не только разным организмам, но и разным клеткам одного и того же организма. Это определяется, по-видимому, различиями в количествах соответствующих тРНК. Тем самым такие мутации имеют регуляторное значение. Совместно вырожденные кодоны могут мутировать по-разному. Так, например, мутация УУГ (Лей)->-УУА (Лей) не меняет остатка. Но вероятность терминальной мутации УУА равна 0,077, а для УУГ равна 0,049 (табл. 8.11). [c.286]

    Относительные частоты мутаций разных молекулярных типов в гемоглобиновых генах Как отмечалось выше и подробно разъяснялось в разд 4 3, мутации, изменяющие гемоглобиновые гены, можно разделить на различные молекулярные типы Приняв предположение, что относительные числа мутаций разного типа, зарегистрированных к настоящему времени, более или менее репрезентативны в отношении средней частоты их возникновения, мы можем оценить относительные частоты мутаций (рис 5 23) Эти относительные частоты мутаций дают лишь грубое приближение к фактическим величинам Основными источниками смещения являются (1) широкие доверительные интервалы частот кодонных мутаций для отдельных аминокислотных [c.187]

    Следовательно, десять изученных атбег-мутантов содержат бессмысленные мутации в разных местах гена белка головки, вызывающие преждевременную терминацию роста белковой цепочки. Более того, поскольку порядок этих бессмысленных кодонов соответствует размерам неполных полипептидных цепей, образующихся у соответствующих мутантов (что следует из сравнения фиг. 224 и 225), можно заключить, что порядок кодонов и порядок аминокислот коллинеарны. Это означает, что нуклеотидная последовательность гена белка головки транслируется слева направо, как это указано на фиг. 224 и 225. [c.454]


    По чувствительности к различным супрессорам нонсенс-мутации делятся на три класса. Исходный класс нон-сенс-мутаций, изолированных у фага Т4, был назван ам-бер-мутациями. Все эти мутации оказались чувствительными к однопу супрессору Е. соН. Анализируя способность мутантов фага размножаться на разных штаммах Е. соН, несущих амбер-супрессоры, обнаружили новый класс нонсенс-мутаций, названный охра-мутациями. Мутации типа охра не супрессируются амбер-суп-рессорами, а соответствующие им супрессоры называют охра-супрессорами. Интересно, что охра-супрессоры способны супрессировать и амбер- и охра-кодоны, что говорит о возможном сходстве этих типов нонсенс-мутаций. Позднее был обнаружен третий класс нонсенс-мутаций, которых назвали опал-мутациями. Опал-мутации не чувствительны ни к охра-, ни к амбер-супрессорам, а их супрессоры не действуют на кодоны-терминаторы типа охра и амбер . [c.61]

    Варианты гемоглобинов. Варианты гемоглобина возникают вследствие различных мутационных событий в конкретном глоби-новом гене. Чаще всего разные варианты гемоглобина отличаются друг от друга одной аминокислотой в глобиновой цепи. Описано около 350 таких единичных замен [119]. Эти аминокислотные замены вызываются замещением всего одного нуклеотида в триплете. Например, при замене GUA и GAA смысл кодона меняется и место валина в глобиновой цепи занимает глутаминовая кислота (рис. 4.45). Если новая аминокислота отличается от исходной по заряду, измененный гемоглобин будет аномальным по электрофоретическим свойствам. Мутации, которые не влияют на заряд полипептида, обычно удается обнаружить [c.80]

    При реализации такого подхода из гена, клонированного в составе векторной плазмиды, по двум близко расположенным уникальным сайтам рестрикции вырезается фрагмент ДНК, в который требуется внести мутации, и на его место встраивается синтетический двухцепочечный олигонуклеотид, содержащий необходимые замены нуклеотидов (кассету мутаций). В этом случае, если в окрестностях мутагенизируемого локуса гена отсутствуют подходящие природные сайты рестрикции, их вводят с помощью направленного мутагенеза. Разработка автоматических синтезаторов ДНК сделала синтез олигодезоксирибонук-леотидов простой и даже рутинной процедурой. Более того, использование на некоторых этапах синтеза вместо одного нуклеотида смеси из двух, трех или даже всех четырех дезоксирибо-нуклеозидтрифосфатов позволяет получать за один прием сложную смесь олигонуклеотидов, которые могут содержать в определенных сайтах наборы кодонов для многих или даже всех 20 природных аминокислот. Это дает возможность осуществлять одновременный скрининг по искомому мутантному фенотипу большого числа разных мутантных клонов, полученных в одном цикле клонирования. С помощью кассетного мутагенеза можно определять функциональную роль отдельных сайтов и целых доменов в полипептидных цепях конкретных белков и создавать рекомбинантные белки с новыми, подчас неожиданными свойствами. [c.323]


Смотреть страницы где упоминается термин Мутаций разные кодоны: [c.189]    [c.200]    [c.200]    [c.288]    [c.34]    [c.487]    [c.488]    [c.295]    [c.155]   
Генетика человека Т.3 (1990) -- [ c.189 ]




ПОИСК







© 2025 chem21.info Реклама на сайте