Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Различные типы молекулярных орбиталей

Рис. 64. Схема электронных переходов между различными типами атомных и молекулярных орбиталей Рис. 64. Схема <a href="/info/1676564">электронных переходов между</a> <a href="/info/25662">различными типами</a> атомных и молекулярных орбиталей

    Таким образом, атомные Ь-орбитали двух атомов можно комбинировать двумя различными способами для получения двух молекулярных орбиталей - одной связывающей, а другой разрыхляющей. Связывающая орбиталь концентрирует электронную плотность между ядрами разрыхляющая орбиталь концентрирует ее за пределами межъядерной области и вообще не имеет никакой электронной плотности на плоскости, проходящей точно посередине между ядрами. Обе эти молекулярные орбитали симметричны относительно вращения вокруг прямой, соединяющей ядра сказанное означает, что при вращении вокруг данной прямой ни форма электронного облака, ни знак комбинации волновых функций не изменяются. Орбитали с такой симметрией называются сигма (а)-орбиталями. Связывающую орбиталь отличают при записи от разрыхляющей орбитали тем, что последней присваивают значок . [Молекулярные орбитали различных типов обозначаются символами сигма (0), пи (и), дельта (5),... по аналогии с обозначениями атомных орбиталей 5, р, [c.517]

    Если двухатомная молекула образована одинаковыми ядрами, можно просто представить молекулярные орбитали, состоящими из индивидуальных атомных орбиталей. Как видно из рис. 5-7. для 5- и р-орбиталей возможно образование двух различных типов молекулярных орбиталей. Атомные орбитали комбинируются с образованием двух молекулярных орбиталей — связывающей н разрыхляющей, соответствующих симметричной и антисимметричной функциям. Молекулярные орбитали, образованные из 1з-атомных орбиталей, имеют цилиндрическую симметрию относительно линии, соединяющей центры атомов А и В. Такие связи называют ст-связями. При комбинации двух р -орбиталей или р - и з-орбиталей также образуются а-связи. Наоборот, р -орби-тали, как показано на рис. 5-7, имеют совсем другую симметрию относительно оси связи. Такие связи называют я-связями и, так как они образуются при перекрывании р - и р -атомных орбита-лей, их обозначают соответственно или я -связями. Необходимо различать связывающие и разрыхляющие орбитали. Это можно сделать путем обозначения разрыхляющей ст-орбитали через а, а разрыхляющей я-орбитали через я. Такие же обозна- [c.154]

    Если двухатомная молекула образована одинаковыми ядрами,, можно просто представить молекулярные орбитали состоящими из индивидуальных атомных орбиталей. Как видно из рис. 5-7, для s-и р-орбиталей возможно образование двух различных типов молекулярных орбиталей. Атомные орбитали комбинируются с образованием двух молекулярных орбиталей — связывающей и разрыхляющей, соответствующих симметричной и антисимметричной функциям. Молекулярные орбитали, образованные из ls-атомных орбиталей, имеют цилиндрическую симметрию относительно линии,. [c.149]


    В начале настоящей главы мы расскажем о том, как атомы могут объединяться в молекулы. Рассмотрев различные типы связей, которые существуют в органических соединениях, мы обсудим теорию молекулярных орбиталей и применение этой теории для описания связей в некоторых малых молекулах. Затем мы перейдем к теории отталкивания электронных пар валентной оболочки и к понятию гибридизации, которые помогут нам представить образование связей в более сложных молекулах. Далее мы кратко расскажем о том, как структуры Льюиса используются для представления органических молекул. Часть этого рассказа будет посвящена расчету заряда ( формального заряда ) на атомах в молекулах. Наконец, мы остановимся на очень важной для понимания строения и реакций органических соединений теории резонанса. [c.27]

    Бидуальных атомных орбиталей. Как видно из рис. 5-9, для 5-и /7-орбиталей возможно образование двух различных типов молекулярных орбиталей. Атомные орбитали комбинируются с образованием двух молекулярных орбиталей — связывающей и разрыхляющей, соответствующих симметричной и антисимметричной функциям. Молекулярные орбитали, образованные из 1з-атомных орбиталей, имеют цилиндрическую симметрию относительно линии, [c.184]

    Различные типы молекулярных орбиталей [c.350]

    Проведенное выше рассмотрение характера связи в HF показывает, что не сушествует чисто ионных, как и чисто ковалентных связей. Не существует и принципиального различия между этими двумя типами связи-они лишь являются предельными случаями непрерывного ряда связей с различной полярностью. В рамках теории молекулярных орбиталей гораздо большее значение, чем оценка ионного характера связи, имеет близость энергетических уровней взаимодействующих орбиталей двух атомов. Эта степень близости уровней связана с электроотрицательностью атомов. [c.537]

    Многообразие типов химических связей в углеводородах требует различных теоретических подходов дая описания строения и свойств этих молекул. Поэтому наряду с классической теорией локализованных химических связей — теорией валентной связи (ВС), в органической химии необходимо использование теории делокализованной химической связи — теории молекулярных орбиталей (МО). Без применения этой теории невозможно понять специфику органической материи.  [c.6]

    Первый этап исследования заключается в построении молекулярных орбиталей. Для этого воспользуемся валентными 2s- и 2р-орбиталями каждого из двух атомов молекулы. На рис. 12-6 схематически изображены их энергетические уровни, а на рис. 12-7 показаны типы различных молекулярных орбиталей, образованных комбинациями этих атомных орбиталей. [c.520]

    Химическая связь возникает благодаря взаимодействию электрических полей, создаваемых электронами и ядрами атомов, участвующих в образовании молекулы или кристалла. Независимо от типов химической связи причина ее образования — одна. Химическая связь образуется, если электроны взаимодействующих атомов получают возможность двигаться одновременно вблизи положительных зарядов нескольких ядер. Задача заключается в том, чтобы достаточно правильно описать главные детали этого движения многих частиц и научиться рассчитывать в различных участках молекулы электронную плотность, обеспечивающую связывание атомов. Оказалось, что получить даже качественно правильные решения уравнения Шредингера удается не всегда. Поэтому в настоящее время применяются для объяснения свойств химической связи разнообразные приближенные теории, часто сильно отличающиеся друг от друга. Из методов квантовой химии наиболее известны два подхода к расчету молекулярных систем — метод валентных связей (метод ВС) и метод молекулярных орбиталей (метод МО). [c.101]

Рис. 14.1. Относительные энергии молекулярных орбиталей и различные типы электронных переходов, встречающиеся в электронной спектроскопии. Рис. 14.1. Относительные <a href="/info/82277">энергии молекулярных орбиталей</a> и <a href="/info/1135544">различные типы электронных</a> переходов, встречающиеся в электронной спектроскопии.
    Атомные орбитали могут перекрывать друг друга, как по ст , так и по л-типу, в результате формируются а- и я-молекулярные орбитали. Образование различных молекулярных орбиталей показано схематически на рис. 1.50. Молекулярные орбитали, образованные из s-атомных орбиталей, обозначены ст о-орбитали, полученные из р2-атомных орбиталей,— Ог (для двухатомных молекул принято считать ось z проходящей через ядра атомов) я-орбитали, образованные из Рг- и 9д -атомных орбиталей, обозначены соответственно Лу и Ялг. Разрыхляющие орбитали отмечают звездочкой (al, Лу). Часто МО обозначают также, указывая после букв а или я те АО, из которых образовалась МО als, я2р, и т. д. Эти обозначения более строгие, но они длиннее. [c.102]


    Наличие в уравнениях (9.1), (9.3) двух переменных — орбитальных энергий г1(щ) и чисел заполнения И/ — позволяет применить качественную теорию молекулярных орбиталей для решения двух различных типов задач 1) для установления зависимости орбитальных и полных энергий системы от вида геометрических конфигураций образующих ее атомов и выявления геометрии устойчивой структуры 2) для нахождения при заданном геометрическом строении д или симметрии молекулы оптимальной электронной конфигурации, т, е. числа электронов при которых система устойчива или обладает необходимыми физическими параметрами (потенциал ионизации, сродство к электрону, магнитные характеристики и пр.). [c.333]

    В следующем разделе показано, что второе допущение о взаимозависимости между атомными и молекулярными орбиталями особенно важно. Оно оказалось настолько удобным, что в ряде случаев, чтобы сохранить это допущение, были предложены атомные орбитали различных типов. [c.16]

Рис. 62. Схема электронных переходов между различными типами атомных и молекулярных орбиталей а — заполненные в основном систоянни орбитали б —вакантные орбитали Рис. 62. Схема <a href="/info/1676564">электронных переходов между</a> <a href="/info/25662">различными типами</a> атомных и <a href="/info/1199">молекулярных орбиталей</a> а — заполненные в основном систоянни орбитали б —вакантные орбитали
    Оказывается, что орбитали р-типа (и высших типов) могут перекрываться двумя способами, как это изображено на рис. 7.8, где также указаны вид результирующих МО и их симметрия. В соответствии с этой симметрией различают МО двух типов а-МО (симметричные относительно отражения в плоскости, в которой лежит соединяющая ядра прямая) и я-МО (антисимметричные по отношению к отражению в такой плоскости). Следующее важное различие заключается в том, что орбитали первого типа можно, грубо говоря, преобразовать в двухцентровые, т. е. локализованные на двух центрах орбитали (охватывающие главным образом область между ядрами атомов, из АО которых образована данная МО), в то время как для л-орбиталей типична многоцентровость, так что они часто охватывают большее число атомов. Поэтому такие МО называют делокализованными (в отличие от локализованных МО). На рис. 7.9 показана зависимость интегралов перекрывания (для перекрывания а- и я-типа) от расстояния между атомами. Наконец, в табл. 7.3 перечислены все возможные случаи эффективного (5 > 0) и неэффективного (S — О, неэффективность обусловлена симмеТ рией) составления линейных комбинаций атомных орбиталей при построении молекулярных орбиталей. Если интеграл перекрывания равен нулю, говорят, что соответствующие функции ортогональны. На рис. 7.10 приведены примеры перекрывания, ведущего к образованию молекулярных орбиталей о-, я- и б-типа (см. разд. 9.4). На рис. 7.11 показан вид молекулярных орбиталей (связывающих и разрыхляющих, см. разд. 9.1 и 9.4) для некоторых комбинаций атомных орбиталей кроме того, для нескольких простейших углеводородов схематически изображено образование связывающих а- и я-МО (разрыхляющие МО в этих случаях не приведены) в результате перекрывания различных АО. [c.173]

    Дальнейшее развитие теории химической связи относится к разработке метода молекулярных орбиталей, который возник в конце 20-х гг. и получил отражение вначале в исследованиях Ф. Хунда (1896) — гейдельбергского физика и Дж. Э. Леннард-Джонса (1894) — английского химика. Ф. Хунд представлял химическую связь как сумму функций двух электронов, принадлежащих различным атомам, вступающим в соединение. Ф. Хун-ду принадлежит также известная классификация типов химических связей. Вначале он предполагал существование нескольких типов связей, обозначавшихся им греческими буквами с индексами. В 30-х гг. он пришел к выводу о существовании двух основных типов химических связей — простой, или а-связи (обычно обозначаемой черточкой), и так называемой л-связи. а-Связь [c.229]

    Ввиду сложности решения молекулярных уравнений даже на хартри-фоковском уровне различные исследователи разработали методы, в которых используются дополнительные приближения. Некоторые из них включают систематическое исследование уравнений для полной энергии, основанных на одноэлектронных молекулярных орбиталях, которые являются линейными комбинациями базисных функций. Это делается с целью нахождения таких типов интегралов на базисных функциях, которые могут оказаться пренебрежимо малыми. Тогда такие интегралы могут систематически исключаться из расчетов. Например, выражение для электронной энергии молекулы, записанное через молекулярные орбитали, имеет вид [c.236]

    В молекуле НР энергии атомной Ь-орбитали водорода и атомной Ь-орбитали фтора настолько различны, что в сущности между ними отсутствует взаимодействие. Слищком низкой энергией обладает также и 25-ор-биталь атома фтора. Только 2р-орбитали фтора достаточно близки по энергии к Ь-орбитали водорода, чтобы эффективное взаимодействие между ними привело к образованию настоящих молекулярных орбиталей. Но из трех 2р-орбиталей фтора две (2р и 2ру) имеют неподходящую симметрию для комбинации с Ь-орбиталью водорода, как это можно видеть из рис. 12-11. Результирующее перекрывание каждой из этих двух р-орбиталей с Ь-орбиталью сводится к нулю, если учесть знаки волновых функций. Молекулярные орбитали в НР поэтому образуются комбинациями 1х-орбитали атома водорода с 2р -орбиталью атома фтора. Эти комбинации дают две молекулярные орбитали с симметрией а-типа, одну связывающую (ст) и другую разрыхляющую (ст ). [c.532]

    Сравнительно недавно [27] были получены спектры РФС газообразных веществ, ранее исследуемых методом УФС. Полученные интересные результаты основаны на относительных поперечных сечениях фотоионизащ1и валентных электронов в зависимости от энергии источника. Например, для рентгеновского излучения с больщей энергией электроны на молекулярной орбитали, составленной главным образом из атомных 5-орбиталей, имеют более высокое относительное поперечное сечение (и, следовательно, большую интенсивность спектральной линии), чем электроны на молекулярной орбитали, составленной в основном из атомных 2р-орбиталей. Сопоставление спектров РФС и УФС указывает на различные относительные интенсивности соответствующих пиков. Пик, обусловленный электронами на молекулярных орбиталях, составленных главным образом из атомных орбиталей 5-типа, имеет большую относительную интенсивность в спектре РФС, чем в спектре УФС. [c.340]

    Межмолекулярные силы имеют в основном электрическую природу, обусловленную движением электронов и ядер, составляющих взаимодействующие молекулы [127,128]. В то же время межмолекулярные потенциалы рассматриваются как результат одновременного существования различных типов межмолекулярного взаимодействия (ММВ), каждый из которых вносит свой вклад в результирующий потенциал (табл.2.1). Это позволяет выделить типы ММВ, дающие в данной области межмолекулярных расстояний R наибольший вклад в общую энергию ММВ, обладающие конкретным физическим смыслом и связанные с определенными физическими характеристиками молекул. В этом аспекте различают три области R [128]. Б первой области с R < 0,212 нм, где потенциал имеет характер отталкивания, электронный обмен в связи с перекрыванием молекулярных орбиталей весьма существенен и молекулы теряют индивидуальность, образуя единую взаимодействующую систему (квазимолекулу), основной вклад в межмоле-кулярный потенциал Emi вносят кулоновское E oui и обменное Еех взаимодействия  [c.62]

    Атомные орбитали могут перекрывать друг друга, как по о--, так и по п-типу, в результате формируются молекулярные <г- и п-орбитали. Образование различных молекулярных орбиталей показано схематически на рис. 1.47. Молекулярные <г-орбитали, образованные из атомных -орбиталей, обозначены <г, (г-орбитали, полученные из атомных р-орбиталей, обозначены сг (для двухатомных молекул принято считать ось г проходящей через ядра атомов) я-орбитали, образованные из атомных р,-и р,-ор<5италей, обозначены соответственно Пу и п,. Разрыхляющие орбитали отмечают звездочкой а-% п . Часто МО обозначают также, указывая после букв <г или л те АО, из которых образовалась молекулярная орбиталь (г15, п2р, и т. д. Эти обозначения более строгие, но они длиннее. [c.108]

    Атомные орбитали могут перекрывать друг друга как по <т-, так и по я-типу в результате возникают ст- и я-молекулярные орбитали. Обра.зование различных молекулярных орбиталей показано схематически иа рис. 89. [c.186]

    Он привел доводы в пользу того, что синглетные карбены присоединяются путем синхронного образования обоих новых о-связей, давая только (74) и сохраняя таким образом стереохимию исходного алкена, в то время как триплетные карбены присоединяются по радикальному двухстадийному механизму с образованием в первую очередь бнрадикала (75), в котором может происходить вращение вокруг связи до инверсии спина и замыкания кольца, что приводит к обоим диастереомерам (74) и (76). Несмотря на широкое обсуждение справедливости теоретических предпосылок, правило Скелла исключительно успешно объясняет многие экспериментальные данные, полученные для этих реакций присоединения. Однако при использовании правила следует соблюдать определенную осторожность, так как в его основе лежат некоторые предположения об относительных скоростях стадий схемы (48), которые могут соблюдаться не во всех случаях [38]. Таким образом, прежде чем однозначно приписать определенную реакционную способность одному из спиновых состояний карбена, следует выяснить свойства обоих состояний. В ряде случаев, когда это требование было точно соблюдено, например в случае метилена, бисметоксикарбонилкарбена, флуоренилидена и др., результаты всегда соответствовали предсказаниям Скелла. Расчет поверхности потенциальной энергии присоединения синглетного метилена к этилену [40, 70] подтверждает синхронность реакции и свидетельствует, что она осуществляется по принципу наименьшего движения через разрешенный орбитальной симметрией подход (77), при котором вакантная р-орбиталь (НСМО) карбена взаимодействует с занятой я-молекулярной орбиталью алкена, причем карбен расположен так, чтобы перекрывание было максимальным, а пространственные взаимодействия минимальны. Более симметричный подход (78), когда занятая о-орбиталь карбена взаимодействует с я-системой, запрещен орбитальной симметрией и по расчету обладает более высокой энергией, чем (77). Расчеты (77) указывают на наличие я р-переноса заряда в переходном состоянии (79), что согласуется с экспериментально наблюдаемым ускорением присоединения большинства карбенов к алкенам, содержащим электронодонорные заместители, и свидетельствует об электрофильной атаке карбена. Многочисленные исследования относительной реакционной способности карбенов с целью выяснения влияния пространственных и электронных эффектов различных заместителей в алкенах и карбенах критически оценены Моссом [48], который показал недавно, что селективность многих карбенов типа СХУ при реакции с олефинами коррелирует как с резонансными, так и с индуктивными параметрами X и V [71]. Большинство карбенов, в том числе сильно я-стабилизованный Ср2 (49), ведут себя как типичные электрофилы, однако ароматические карбены, такие как (80) и (47), проявляют нуклеофильные свойства, например (80) присоединяется через переходное состояние, поляризованное противоположно (79) [72]. Полагают, что это обусловлено [c.596]

    Более того, мы хотели бы также подчеркнуть определенную условность классификации различных типов связей. Так, в 3 мы уже отмечали, что электроппаи конфигурация атомов инертного газа наиболее предпочтительна для атомов или ионов составляющих молекул, но не единственна. Наглядной иллюстрацией такого утверждения является, в частности, образование (например, в условиях газового разряда) устойчивого молекулярного иона Hj" . Интересно то, что эта частица состоит из двух протонов и одного электрона. Каждый атом водорода в частице Н2+ имеет валентную 1 s-op-биталь (рис. 26). Между двумя ядрами показана область перекрывания этих орбиталей, н единственный электрон большую часть времени проводит в области перекрывания между гдрами Нд и Нв. [c.99]

    В атоме уровни энергии соответствуют различным разрешенным состояниям электронов. Молекула также может поглощать или испускать энергию вследствие переходов электронов между различными молекулярными орбиталями. Р сли связывающий или несвязывающий электрон в молекуле переходит под действием излучения из основного состояния на незанятую молекулярную орбиталь, это характеризуется как изменение электронного состояния молекулы. Кроме того, молекула может поглотить квант энергии и увеличить свою колебательную энергию, а также в результате возбуждения увеличить вращательную энергию. Последние два типа возбул<де-ния у атомов происходить не могут. Энергии, связанные с тремя механизмами возбуждения — электронным, колебательным и вращательным,— сильно различаются по величине. В хорошем приближении их можно рассматривать независимо друг от друга и считать, что полная энергия молекулы складывается нз трех частей электронной л, колебательной Якол и вращательной пр, т. е. [c.174]

    Проведенное рассмотрение имеет общий характер — в приближении ЛКАО из двух атомных орбиталей формируются две молекулярные, одна из которых является связывающей, а другая — разрыхляющей. Однако области перекрывания могут существенно отличаться для различных атомных орбиталей. При этом возможны два основных варианта. Максимальное перекрывание может происходить на линии, соединяющей атомы, как при сближении двух атомов Н. Аналогичный тип перекрывания может реализоваться при образовании молекулярных орбиталей из одной s- и одной р-орбитали, а также из двух /7-орбиталей, однако при этом р-орбп-тали должны быть ориентированы по линии, (Jeдиняющeй ядра (рис. 6). Образующиеся молекулярные орбитали в этом случае называются а-орбиталями. Для образования о-орбиталей особенно хорошо приспособлены гибридные орбитали, так как они ориентированы преимущественно в одном из направлений вдоль оси, что обеспечивает более эффективное перекрывание с атомными орбиталями партнеров. Например, для связи N—Н интеграл перекрывания ls-орбитали Н с 25-орбиталью N равен 0,54, с 2/7-орбиталью — [c.14]

    При оценке донорных и акцепторных свойств молекул следует учитывать не только потенциал ионизации, но и степень перекрывания молекулярных орбиталей донора и акцептора, а также стерические эффекты. При этом можно наблюдать конкурирующее влияние различных факторов на донорные свойства. Например, введение метильиой группы в положение 2 (6) пиридинового кольца усиливает донорные свойства атома азота за счет индуктивного эффекта, но одновременно эта метильная группа создает стерические затруднения при взаимодействии с молекулой акцептора. В зависимости от типа акцептора степень проявления этих эффектов различна [230]. [c.16]

    При исследовании возможности решения уравнений Хартри — Фока мы будем исходить из соотношений (5.59а) —(5.59г), кото рые справедливы для случая, когда основное состояние описы вается слейтеровским детерминантом вида (5.43), отвечающим системе с замкнутой оболочкой именно этот случай мы рассмот рим наиболее подробно. С точки зрения вариационного прин ципа одноэлектронные функции, зависящие от пространственных координат выбранного электрона, могут быть орбиталями двух типов (в зависимости от того, идет ли речь об атоме или о молекуле) а) атомными орбиталями локализованными на выбранном атоме, ядро которого совпадает с началом локальной системы координат, где определены координаты электронов, либо б) молекулярными орбиталями ф, простирающимися на большее число центров многоядерной системы — молекулы. Последние удобнее всего строить в виде разложения по атомным функциям или атомным орбиталям, локализованным на атомах, образующих молекулу [см. (5.63)], иными словами, эти функции, или атомные орбитали, образуют базис для разложения молекулярных орбиталей. Если число таких функций (или АО) так невелико, что они описывают лишь электроны атомов в основном состоянии, базис называют минимальным (см. разд. 6.6). Примером расширенного базиса служит базис слейтеровских двухэкспонентных ( дабл-дзета ) функций, в котором каждой атомной орбитали соответствуют две слейтеровские функции (см. ниже) с различными экспонентами (экспоненты, обозначенные в данной книге иногда обозначают также ). [c.204]

    Химические реакции в течение долгого времени были привлекательным объектом для квантовой химии. Особенно следует отметить замечательные успехи теории молекулярных орбиталей (МО-теория) в интерпретации большого числа химических реакций и предсказании для них ориентации и стерео направленности. В терминах молекулярных орбиталей были рассмотрены фундаментальные проблемы химических реакций различного типа как внутримолекулярных, так и межмолекулярных. Широкое применение среди химиков-органиков находят в настоящее время индексы хи-мтеской реакционной способности для я- и (т-электронных систем, предложенные на основе нескольких реакционных моделей [1—5]. Правила отбора Вудворда — Гоффмана для перициклических процессов раскрывают основные принципы, лежащие в природе реакций, относящихся с обычной точки зрения к совершенно различным типам это стимулирует новые экспериментальные исследования на основе предсказаний данных правил [6—9]. Недавний прогресс в области высокоскоростных вычислительных машин позволил удобно использовать некоторые полуэмпирические МО-мето-ды для расчета сложных взаимодействующих систем и получить результаты, достаточно точные в химическом смысле [10—18]. С помощью таких полуэмпирических методов были изучены координаты некоторых реакций [19—26]. Имелись попытки рассчитать химическое взаимодействие между большими молекулами методом МО аЬ initio [27—31 ]. Проведены также широкие исследования способов химического взаимодействия на основе молекулярных орбиталей изолированных реагентов [32—39]. Применение этих методов к реагирующим системам, интересным с химической точки зрения, в общем ограничено ранней стадией реакции поэтому энергию взаимодействующих систем обычно представляют в виде зави- [c.30]


Смотреть страницы где упоминается термин Различные типы молекулярных орбиталей: [c.277]    [c.522]    [c.332]    [c.313]    [c.353]    [c.35]    [c.36]    [c.27]    [c.42]    [c.60]    [c.43]    [c.60]    [c.293]   
Смотреть главы в:

Квантовая механика и квантовая химия -> Различные типы молекулярных орбиталей

Квантовая механика и квантовая химия -> Различные типы молекулярных орбиталей




ПОИСК





Смотрите так же термины и статьи:

Молекулярные орбитали орбитали

Орбиталь молекулярная



© 2025 chem21.info Реклама на сайте