Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь между теплотой смачивания и удельной поверхностью

    Связь между теплотой смачивания и удельной поверхностью [c.337]

    Связь между теплотой смачивания и величиной удельной поверхности химически однородных образцов выражается следующим уравнением  [c.133]

    На основании одной из точек зрения, которая здесь не рассматривалась, утверждается, что значения энергии в основном определяются такими типами кремнезема, в которых рост частиц уже сравнительно стабилизирован. С другой стороны, для значительно более тонкодисперсиого кремнезема, например с удельной поверхностью, превышаюшей 600 м /г, радиус кривизны поверхности составляет менее 25 А. В этом случае сила-нольпые группы должны располагаться на поверхности отдельно одна от другой и, следовательно, между соседними гидроксильными группами может образовываться относительно меньшее число водородных связей. В свою очередь это привело бы к повышению теплоты смачивания, понижению теплоты дегидратации, уменьшению плотности частиц и поверхностной энергии. Несомненно, что при таких условиях образование частиц произойдет при меньших значениях их радиуса кривизны. Однако сведений об энергии для кремнезема такого [c.20]


    При рассмотрении влияния обменных ионов на структурно-механические свойства системы глина — вода необходимо также учитывать концентрацию дисперсной фазы. В концентрированных, и особенно в малоувлзжненных мзссах полусухого прессования, где количество воды равно максимальной адсорбционной емкости глины, обменные ионы будут оказывать наибольшее влияние на коагуляционно-тиксотропные структуры. Это подтверждается результатами структурно-механиче ского анализа полусухих масс на основе глинистых минералов [271 Между физико-химическими и структурно-механическими характери стиками паст глинистых минералов установлен ряд взаимосвязей С увеличением теплоты смачивания слоистого силиката, характеризую щей его удельную эффективную поверхность, возрастает удельный условный модуль деформации, т. е. удельная энергия связи коагуляционной структуры. С ростом теплоты смачивания разность между предельными величинами 01, г о, уменьшается. Симбатно с темпера- [c.229]

    На рис. 1 даны кривые содержания структурной воды для исследованных образцов, рассчитанные на 1 поверхности, в зависимости от температуры их прокаливания. С ростом температуры прокаливания силикагель теряет свою воду, при низких температурах помимо структурной воды удаляется и адсорбированная вода. До температур порядка 600— 700° выделение структурной воды идет, в основном, за счет дегидратации поверхности при более высоких температурах вода выделяется преимущественно за счет уменьшения поверхности в результате спекания силикагеля. Весьма важно найти возможность различить адсорбированную ч структурную воду, поскольку эксперимегг-тально из потери при прокаливании определяется общее содержание воды в силикагеле. Результаты измерения теплот смачивания водой силикагелей, прокаленных при разных температурах [5], а также данные по зави-JUO Ш доо симости адсорбции паров воды от темпера-Гемпература про/гамивания, 0 туры прокаливания пористых стекол [6], показывают, что эти адсорбционные характеристики в интервале температур 200—300 проходят через максимум. При температурах меньших 200—300° энергия поверхности падает, как за счет присутствия адсорбированной воды, так, по-видимому, и за счет того, что часть соседних гидроксильных групп на поверхности может взаимодействовать между собой с образованием водородных связей. Мы приняли за стандартную температуру обработки образцов силикагеля — 300°, соответствующую максимальной адсорбционной активности поверхности. Вблизи этой температуры на кривых обезвоживания силикагелей (рис. 1) имеется характерный перегиб, который наблюдался и в работе Жданова [6]. Из рис. 1 видно, что при температуре стандартной обработки (300°), а также и при более низких температурах (150—200°) гидратация поверхности не является величиной постоянной. Силикагелю с большей величиной удельной поверхности соответствует меньшая гидратация поверхности и наоборот. Таким образом, при совершенно идентичных условиях подготовки образцов с различной удельной поверхностью мы не получили в результате поверхпости одинаковой степени гидратации. Даже обработка силикагеля в автоклаве при благоприятных условиях гидратации не дала (силикагель К-3) поверхности, гидратированной более, чем у образца, с примерно такой же поверхностью, обработанного при стандартных условиях. Сопоставление наших данных с результатами других авторов [7, 8], приведенное на рис. 1, показывает, что найденная нами связь между степенью гидратации образца и величиной его удельной поверхности не является случайной. Например, измерения, произведенные Бастиком [8] на силикагеле, имеющем удельную поверхность 697 м /г, практически полностью совпадают с нашими данными для силикагеля К-2 (695 м 1г). Качественно ту же зависи- [c.416]



Смотреть главы в:

Адсорбция, удельная поверхность, пористость -> Связь между теплотой смачивания и удельной поверхностью




ПОИСК





Смотрите так же термины и статьи:

Поверхность удельная

Смачивание

Теплота смачивания



© 2025 chem21.info Реклама на сайте