Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структурно-механический барьер

    Тип образующейся эмульсии определяется свойствами эмульгатора. Прочность и устойчивость образовавшейся адсорбционной оболочки являются факторами, определяющими устойчивость эмульсии. Таким образом, эмульгатор снижает поверхностное натяжение на межфазной границе и образует структурно-механический барьер (оболочку), придающий системе устойчивость. Как следствие отсюда, Банкрофт установил следующее правило  [c.15]


    Агрегативная устойчивость пен характеризуется скоростью укрупнения частиц дисперсной фазы за счет коалесценции и изотермической перегонки. Стабилизация пен достигается с помощью ПАВ. В зависимости от природы ПАВ и свойств образуемых ими адсорбционных слоев, устойчивость пен обусловливается действием общих для дисперсных систем факторов стабилизации (ионно-электростатический, структурно-механический барьер и др.) и специфическим для пен и эмульсий эффектом Гиббса — Марангони [c.175]

    Устойчивость эмульсий типа В/Н, как указывалось ранее, объясняется, главным образом, наличием структурно-механического барьера на границе двух фаз. Образование двойного электрического слоя у эмульсий обратного типа представлялось невозможным вследствие малой диэлектрической проницаемости дисперсионной среды. Однако работами последних лет показано, что даже в неполярных средах может происходить некоторая ионизация и что образующийся двойной электрический слой может играть существенную роль в устойчивости эмульсий обратного типа, особенно разбавленных. [c.32]

    Таким образом, стабильность истинных эмульсий определяется электростатическим отталкиванием двойных ионных слоев и появлением структурно-механического барьера, обусловленного высокой структурной вязкостью адсорбционных слоев. [c.146]

    Поверхностно-активные вещества и высокомолекулярные соединения, создающие адсорбционно-гидратные слои, которые служат структурно-механическим барьером, называются стабилизаторами. [c.78]

    Особенностью рассматриваемой НДС является стабилизация размеров дисперсной фазы при высоком (более 50%) содержании тяжелых остатков в смеси. По-видимому, в данном случае повышение агрегативной устойчивости обеспечивается оптимальным соотношением факторов, способствующих ассоциации асфальтенов (рост их количества, соотношение алканов и аренов) и подавляющих ее -усиление структурно-механического барьера при сольватации естественных ПАВ высокомолекулярными углеводородами и смолами тяжелого остатка. [c.10]

    Для рассматриваемого типа НДС фактором, определяющим устойчивость, является структурно-механический барьер, концепция которого была предложена Ребиндером [17].Он имеет место в дисперсных системах со структурированными межфазными слоями, сформированными в результате адсорбции из раствора ПАВ. [c.27]

    В состав защитных слоев также входят молекулы дисперсионной среды (воды), поэтому можно сказать, что молекулы эмульгатора гидратированы. Таким образом, на поверхности битумной капли формируется адсорбционно-гидратный слой, который и играет решающую роль в стабилизации системы. Защитная оболочка имеет структуру геля и обладает определенной прочностью на сдвиг, представляя собой структурно-механический барьер. [c.56]


    Как известно, главной задачей эмульгатора является стабилизация элементов дисперсной фазы в эмульсии за счет понижения поверхностного натяжения на границе раздела фаз и создания структурно-механического барьера . Помимо этого современные эмульгаторы битума в воде должны как минимум удовлетворять следующим требованиям  [c.75]

    Одним из факторов агрегативной устойчивости эмульсий является структурно-механический барьер — гелеобразно структурированные адсорбционные слои мылоподобных ИАВ на поверхности капель, сильно структурированные дисперсионной средой и обладающие повышенными структурномеханическими свойствами — вязкостью, упругостью, прочностью. Такие коллоидные адсорбционные слои представляют собой своеобразные пленочные (двухмерные) студни (гели), диффузно переходящие в золь с удалением от поверхности капель. Они обеспечивают высокую стабилизацию дисперсных систем, что особенно важно при получении концентрированных и высококонцентрированных эмульсий. Таков (по П. А. Ребиндеру) механизм стабилизирующего действия мыл, а также белков и других высокомолекулярных стабилизаторов. [c.193]

    Исследования структурно-механических свойств УМЭ и сопоставление их с устойчивостью эмульсий показывают несомненную роль УМЭ в формировании структурно-механического барьера, обеспечивающего стабильность эмульсий. [c.195]

    Таким образом, по представлениям А. Б. Таубмана и С. А. Никитиной, структурно-механический барьер стабилизации связан в этих случаях не с формированием адсорбционных слоев ПАВ самих по себе, а с образованием на границе раздела масло — вода сложных надмолекулярных структур в форме многослойной фазовой пленки УМЭ, имеющей гелеобразные свойства и строение. Структурно-механические свойства такой Пленки определяют устойчивость эмульсий. [c.195]

    Устойчивость эмульсий типа в/м, стабилизованных мылами с поливалентным катионом, ранее объяснялась главным образом ка- личием на поверхности капелек эмульсии структурно-механического барьера. Объяснение же устойчивости эмульсий типа в/м существованием на межфазной поверхности двойного электрического слоя на первый взгляд кажется невозможным вследствие малой диэлектрической проницаемости дисперсионной среды. Однако, как уже указывалось (гл. IX, разд. II), в последние годы было показано, что даже в неполярных средах может происходить некоторая диссоциация молекул эмульгатора. Соли поливалентных металлов и органических кислот в углеводородных средах обычно имеют константы диссоциации порядка 10 . Следовательно, если, на- пример, концентрация такой соли в бензоле равна 10 ммоль/л, то концентрация ионов в растворе будет иметь значение порядка 10 ° н. При таких условиях двойной электрический слой будет, конечно, очень диффузным расчеты показывают, что его толщина должна составлять несколько микрометров. Отсюда емкость двойного слоя в неполярной жидкости должна быть весьма невелика и нужен очень небольшой заряд для того, чтобы обусловить значительный поверхностный потенциал. Таким образом, электростатические силы отталкивания могут играть существенную роль и в устойчивости обратных эмульсий, особенно не очень концентрированных. [c.374]

    В свете этих представлений становится понятным тот факт, что эффективными эмульгаторами могут быть такие ПАВ, адсорбционные слои которых не обладают повышенной прочностью. Причина несоответствия — в замедленной кинетике формирования структурно-механического барьера. Величину Рт на границе раздела двух фаз обычно измеряют в статических условиях, когда еще не успел развиться структурно-механический барьер в форме УМЭ. Устойчивость же эмульсий определяется именно этим барьером, который в условиях энергичного перемешивания при диспергировании образуется очень быстро. [c.195]

    Уже давно высказывалось мнение, что устойчивость пен и эмульсий должна сильно возрастать, когда на поверхности раз дела между дисперсной фазой и дисперсионной средой образуется слой из молекул стабилизатора, обладающий повышенной структурной вязкостью или даже известной механической прочностью и являющийся как бы структурно-механическим барьером, препятствующим сближению частиц. [c.283]

    Наконец, адсорбционно-сольватные слои ПАВ могут представлять собой структурно-механический барьер, препятствующий сближению частиц, поскольку защитные слои стабилизатора, являясь гелеобразными, обладают повышенной структурной вязкостью и механической прочностью (структурно-механический фактор устойчивости). [c.97]

    По П. А. Ребиндеру, стабилизующее действие гелеобразных адсорбционных слоев стабилизатора обусловливается тем, что высоковязкая прослойка между частицами не успевает выдавиться за время столкновения частиц дисперсной фазы в результате броуновского движения или в потоке. В известных условиях стабилизация дисперсных систем адсорбционно-сольватными слоями, обладающими упругостью и механической прочностью, может безгранично повышать устойчивость системы вплоть до полной фиксации ее частиц. Примером этому может служить отвердевание жидких прослоек между воздушными пузырьками пены в результате геле-образования или полимеризационных процессов. П. А. Ребиндер отмечает, что образования структурно-механического барьера достаточно для стабилизации только тогда, когда на наружной границе адсорбционного слоя поверхностная энергия мала и не резко возрастает на подступах к частице. При наличии хотя и структурированной, но не лиофильной, а лиофобной оболочки все же может происходить слипание частиц путем сцепления оболочек наружными поверхностями. Такого рода явления можно наблюдать при флотации в результате адсорбции поверхностно-активных веществ полярными группами на поверхности гидрофильных твердых частиц. Направленные в водную среду углеводородные цепи связываются друг с другом своеобразной местной коалесценцией гидрофобных оболочек. [c.284]


    Вещества (ПАВ и ВМС), создающие структурно-механический барьер, называются стабилизаторами. Адсорбционные слои структурируются вследствие ориентации молекул и боковой когезии (в результате притяжения диполей полярных групп соседних молекул, образования водородных связей или гидрофобного взаимодействия неполярных групп). Прочность полимерных слоев увеличивается во времени (в отличие от слоев ПАВ), достигая предельного значения лишь через несколько часов, что обусловлено замедленной диффузией макромолекул и медленной ориентацией их на границе раздела фаз. [c.260]

    Таким образом, адсорбционный слой, представляющий нечто иное, как структурно-механический барьер, влияет на взаимодействие частиц, не устраняя их притяжения. Следовательно, адсорбционные пленки не должны были бы привести к повышению устойчивости системы. Однако если Кг-а = О, то молекулярным притяжением между пленками можно пренебречь. В то же время стабилизующие пленки могут являться препятствием, мешаюш,им тесному сближению частиц. Если частицы не могут приблизиться друг к другу, то молекулярные т-и- о i силы притяжения между ними будут Схема взаимодействия малы, поскольку расстояние велико. Это частиц, стабилизованных полислоями и приводит к повышению устойчивости. поверхностно-активного вещества  [c.285]

    Дальнейшее развитие описанных представлений нашло отражение в работах других исследователей. Так, принимается, что вокруг капель эмульсии мономеров спонтанно образуются ультрамикроэмульсии, размер которых близок к размеру частиц латекса. Эти ультрамикроэмульсии рассматриваются как мицеллярные растворы с солюбилизацией воды — жидкокристаллическая мезо-фаза в системе эмульгатор — вода — мономер. Наличие их на поверхности раздела фаз обусловливает существование структурно-механического барьера стабилизации эмульсий. Считается, что капли ультрамикроэмульсий являются зоной протекания реакции полимеризации [26]. [c.147]

    Рассмотренные выше классические представления о роли бронирования в устойчивости эмульсий, стабилизованных твердыми эмульгаторами, значительно расширены А. Б. Таубманом. В его работах показано, что в реальных условиях высокая устойчивость эмульсий, стабилизованных твердыми эмульгаторами, определяется обычно совместным действием твердого высокодисперсного эмульгатора и поверхностно-активного компонента и это стабилизующее действие обусловлено образованием весьма прочной стабилизирующей оболочки. В этих случаях структурно-механический барьер непосредственно измерен и сопоставлен с устойчивостью. [c.377]

    Согласно Р. Э. Нейману, с увеличением плотности адсорбционных слоев происходит все большая замена двойного электрического слоя сильно развитыми гидратными оболочками на поверхности частиц. Таким образом, имеет место переход от систем, стабилизованных двойным электрическим слоем, к системам, стабильность которых обусловлена структурно-механическим барьером. Иначе говоря, при увеличении адсорбции поверхностью латексных глобуЛ происходит не только количественное, но и качественное изменение механизма стабилизации. Возникает новый по своей природе энергетический барьер, препятствующий коагуляции, близкий к представлениям П. А. Ребиндера, об образовании структурированных гелеобразных слоев эмульгатора. Электрический заряд двойного электрического слоя при этом уменьшается или исчезает совсем благодаря тесному контакту ионогенных групп и возрастанию ионной силы. На неэлектростатическую природу стабилизующего барьера в этом случае, согласно Р. Э. Нейману, указывает и то, что коагуляция адсорбционно насыщенных латексов не подчиняется закономерностям, характерным для латексов, частицы которых несут двойной электрический слой. Очевидно, существует иной, неэлектростатический механизм стабилизации, связанный со структурой и гидратацией плотно упакованных насыщенных слоев эмульгатора. [c.385]

    Эмульгирующая способность порошков значительно меньше, чем растворимых эмульгаторов, и объясняется в основном созданием структурно-механического барьера, ограждающего капли от слияния. [c.455]

    Кроме возникновения структурно-механического барьера для сближения частичек — гелеобразной защитной оболочки, важное условие стабилизации состоит в том, чтобы наружная поверхность такой оболочки была гидрофильной, т. е. чтобы не происходило агрегирование наружными поверхностями этих оболочек (вторичная коагуляция). Именно таков механизм действия сильных стабилизаторов суспензий, эмульсий и пен, обеспечивающих практически предельную стабилизацию — полную агрегативную устойчивость лиофобных систем. При этом стабилизаторы могут быть и сравнительно слабыми поверхност-но-активными веществами, но уже при небольшой адсорбции они могут образовывать сильно структурированные защитные оболочки. Примером служат глюкозиды (сапонин), полисахариды, высокомолекулярные соединения типа белков. [c.70]

    Для 02, силикатов, алюмосиликатов и минералов с кислотными группировками на поверхности гидрофобизирующими ПАВ являются катионоактивные вещества, т. е. ПАВ типа органических оснований и их солей. Они, как правило, оказывают стабилизирующее действие на дисперсные системы. Создание защитной пленки из углеводородных радикалов способствует образованию структурно-механического барьера, препятствующего возникновению структурной сетки. Кроме того, стабилизаторы предотвращают также развитие пространственного каркаса, блокируя места контактов. [c.282]

    В обогатительной практике для получения более стабильной суспензии (основной фа,ктор устойчивости суспензий— структурно-механический барьер) желательно учитывать возможность  [c.254]

    Высокомолекулярные соединения (белки, полипептиды, поливиниловый спирт и другие), добавляемые для стабилизации дисперсных систем, называют з а щ и т н ы м н коллоида м и.. дсорби-руясь иа границе раздела фаз, онн образуют в поверхностном слое сетчатые и гелеобразиь1е структуры, создающие структурно-механический барьер, который препятствует объединению частиц дисперсной фазы. Структурно-механическая стабилизация Г меет решающее значение для стабтытзацин взвесей, паст, пен, концентрированных эмульсий. [c.313]

    Подобный механизм реализуется в рассматриваемых НДС. Наиболее явно правило фильности проявляется в смесях с крекинг-остатком повышение количества вторичных асфальтенов и парафино-нафтеновых углеводородов при снижении доли смол и ароматики в смеси приводит к увеличению межмолекулярного взаимодействия и размеров дисперсных частиц (рис. 1.20). Ослабление структурно-механического барьера - сольватного слоя при этом может приводить к коагуляции асфальтенов и их выпадению, что отмечалось нами ранее на примере смесей прямогонного дистиллята запад-но-сибирской нефти, содержащих более 50% крекинг-остатка. [c.29]

    Исследованиями П. А. Ребиндера и его школы [15, 20] установлено, что основной причиной устойчивости достаточно концентрированных эмульсий нефти типа В/Н является структурно-механический барьер, образующийся вокруг глобул воды в результате адсорёции на межфазной поверхности эмульгаторов (асфальтенов, смол и щ>.), содержащихся в вефтн. Остальные факторы стабилизации эмульсий (электрокинетичес-кяй потенциал, расклинивающее давление и др.) для нефтяных эмульсий типа В/Н являются второстепенными и существенного значения не имеют. По П. А. Ребиндеру стабилизацию нефтяных эмульсий обеспечивают  [c.18]

    Как указьшалось выше, основным стабилизирующим фактором нефтяных эмульсий В/Н является прочный структурно-механический барьер вокруг глобул воды, образованный в результате адсор щи на межфазной поверхности гнщюфобных веществ - эмульгаторов и стабилизаторов, содержащихся в нефти преимущественно в виде коллоидного раствора - олеофильного золя или в виде выоокодиспергированных частиц. [c.22]

    В последние годы проведен ряд исследований [105-112], направленных на изучение механизма действия ПАВ, Результаты этих исследований подтвердили некоторые из высказываемых ранее гипотез. Процесс действия деэмульгаторов на эмульсию весьма сложен, основы его изложены в трудах П. А, Ребиндера и его школы, Дпя разрушения нефтяной эмульсии деэмульгатор должен разрушить структурно-механический барьер на глобулах воды, образованный эмульгаторами нефтн, что возможно в случае введения более поверхностно-активных веществ, чем эмульгаторы. Появление на поверхности раздела более поверхностно-актив 1ых веществ пртводит к тому, что молекулы-эмульгаторы утрачивают свою прежнюю ориентацию и диспергируются в нефтяной фазе. Эффективными деэмульгаторами должны быть ПАВ, растворимые пржмуществеино в нефтяной фазе. [c.130]

    Как указывалось выше, поливиниловый спирт является стабилизатором, который, распределяясь на поверхности раздела дисперсной фазы и дисперсионной среды, создает структурно-механический барьер, препятствующий сближению частиц. Данные физико-химического анализа смешанного стока после злектрообработки в течение 4 мин в однородном поле при напряженности 5 В/см в зависимости от концентрации ионов Са и сольвара в исходной дисперсии приведены ниже  [c.105]

    Лекция 16. Усте1чивость НДС. АгрегативнкЙ и кинетически факторы устойчивости. Концепция структурно-механического барьера. Лето- [c.218]

    Добываемая нефть содержит значительное количество воды, механических примесей, минеральных солей. Поступающая на переработку нефтяная эмульсия подвергается обезвоживанию и обес-соливанию. Характерными чертами нефтяных эмульсий являются их полидисперсность, наличие суспендированных твердых частиц в коллоидном состоянии, присутствие ПАВ естественного происхождения, формирование при низких температура х структурных единиц. По данным [144] в процессе диспергирования капель воды в нефти образуется до триллиона полидисперсных глобул в 1 л 1%-ной высокодисперсной эмульсии с радиусами 0,1 10 мк, образующаяся нефтяная эмульсия имеет большую поверхность раздела фаз. Высокие значения межфазной энергии обуславливают коалесценцию глобул воды, если этому процессу не препятствует ряд факторов структурно-механический барьер, повышенные значения вязкости дисперсионной среды. Установлено, что повышению структурно-механической прочности межфазных слоев в модельной системе типа вода — мас о — ПАВ способствует добавка частиц гЛины [145]. Агрегативная устойчивость нефтяных эмульсий обеспечивается наличием в них ПАВ — эмульгаторов нефтяного происхождения так, эмульгаторами нефтяных эмульсий ромашкинской и арланской нефтей являются смолисто-асфальтеновые вещества, а эмульсий мангышлакской нефти алканы [144]. Интересные результаты об изменении степени дисперсности нефтяных эмульсий в зависимости от pH среды и группового состава нефтей получены в работе [146]. Механизм разрушения нефтяных эмульсий состоит из нескольких стадий столкновение глобул воды, преодоление структурно-механического барьера между rлoбyJ лами воды с частичной их коалесценцией, снижение агрегативной устойчивости эмульсии, вплоть до полного расслоения на фазы. Соответственно задача технологов состоит в обеспечении оптимальных условий для каждой стадии этого процесса, а именно - снижении вязкости дисперсионной среды (до 2—4 ммУс) при повышении температуры до некоторого уровня, определяемого групповым составом нефти, одновременно достигается разрушение структурных единиц уменьшении степени минерализации остаточной пластовой воды введением промывной воды устранении структурно-механического барьера введением определенных количеств соответствующих ПАВ — деэмульгаторов. Для совершенствования технологических приемов по обессоливанию и обезвоживанию нефтей требуется постановка дальнейших исследований по изучению условий формирования структурных единиц, взаимодействия [c.42]

    Установлено, что стабилизации микрогетерогеиных эмульсий способствует самопроизвольное образование ультрамикрогетерогенных эмульсий (микроэмульсий) вокруг частиц. Микроэмульсии (размер частиц 10—100 нм) образуются вследствие турбулентности в приповерхностных слоях частиц основной эмульсии. Слон капелек микроэмульснй выступают в роли структурно-механического барьера, замедляющего коагуляцию основной эмульсии. [c.348]

    В работах А. Б. Таубмана и С. А. Никитиной с сотрудниками показано, что возникновение структурно-механического барьера связано с самопроизвольным образованием ультрамикроэмульсии (УМЭ) на границе раздела двух жидких фаз. Возникновение УМЭ можно легко наблюдать, если наслоить углеводород (масляная фаза) на водный раствор эмульгатора. Спустя некоторое время на границе раздела фаз появляется тонкая молочно-белая прослойка, постепенно утолщающаяся в сторону водной фазы. Это явление — следствие гидродинамической неустойчивости межфазной поверхности углеводород—раствор ПАВ, обусловленной I двусторонним массопереносом через границу раздела (переход в водную фазу вследствие внутримицеллярного растворения, перераспределение эмульгатора между фазами благодаря некоторой растворимости его в углеводороде). В результате возникающей поверхностной турбулентности в обеих фазах вблизи поверхности раздела спонтанно развивается процесс эмульгирования с образованием капелек эмульсии как прямого типа (в водной фазе), так и обратного (в углеводороде). Однако обратная эмульсия, как правило, грубодисперсна, малоустойчива и легко разрушается, тогда как прямая имеет коллоидную степень дисперсности (размер капелек соизмерим с размером мицелл, солюбилизировавших углеводород) и обладает высокой агрегативной устойчивостью. Ультрамикрокапельки ее защищены адсорбционными слоями эмульгатора, которые связывают их в сплошную гелеобразную структуру с заметно выраженной прочностью и другими структурно-механическими свойствами. [c.194]

    Разбавленные эмульсии могут быть достаточно устойчивы в присутствии таких слабых эмульгаторов, как электролиты. Устойчивость таких эмульсий связана в основном с наличием двойного электрического слоя на частицах дисперсной фазы. Устойчивость концентрированных и высококонцентрированных эмульсий в большинстве случаев определяется действием структурно-механического барьера при образовании адсорбционных слоев эмульгатора. Характерно, что образующиеся межфазные адсорбционные слои обусловливают плавное изме-ненпе свойств переходной зоны на границе раздела двух жидких фаз, увеличивая лиофильность частиц дисперсной фазы. Наиболее сильное стабилизирующее действие оказывают высокомолекулярные соединения и коллоидные ПАВ (мыла, неионогенные ПАВ), адсорбционные слои которых имеют гелеобразную структуру и сильно гидратированы. [c.171]

    Однако для таких структурированных жидкостей, как битумы, в некоторых случаях даже в присутствии гидрофильного эмульгатора могут образовыватьсяс водой не только прямые, но и обратные эмульсии. При этом стабилизация капель воды и водных растворов эмульгатора совершается как структурной сеткой битума (структурно-механический барьер), так и олеофильными ПАВ самого битума, подавляющими действие эмульгаторов прямых эмульсий. Эти вещества называют также эмулъгаторами-антаго-нистами. Даже гидрофильный эмульгатор в присутствии электро- [c.57]

    I) Взаимная пластическая деформация при поджиме частиц (прессование порошков) или участков макроскопических поверхностей (холодная сварка, граничное трение). На рис. 1 приведены гистограммы распределения р (%) по прочности (дин), точнее по lgpl, контактов между кристалликами Ag l после их поджима с разным усилием — с чистой поверхностью и в присутствии мо-ноелоя октадециламина видно, как в этом последнем случае адсорбционный слой, играющий роль структурно-механического барьера, полностью предотвращает сцепление. Гистограммы показывают также, что превращение коагуляционных контактов [c.306]

    ПАВ, образующие гелеобразную структуру в адсорбционном" слое и в растворе, относятся к третьей группе. Такие вещества предотвращают коагуляцию частиц, стабилизируют дисперсную фазу в дисперсионной среде, поэтому их называют стаб илиз а-торами. Механизм действия сильных стабилизаторов состоит в том, что, кроме возникновения структурно-механического барьера для сближения частиц, важное условие стабилизации состоит в том, чтобы наружная поверхность такой оболочки была гидрофильной и чтобы не могло произойти агрегирования вследствие соприкосновения наружных поверхностей. Стабилизаторами могут быть сравнительно слабые ПАВ, так как даже при слабой адсорбции они могут образовывать сильно структурированные защитные оболочки. К числу ПАВ, обычно применяемых в качестве стабилизаторов, относятся гликозиды (сапонин), полисахариды, высокомолекулярные соединения типа белков. Стабилизаторы не только препятствуют агрегированию частиц, но и предотвращают развитие коагуляционных структур, блокируя путем адсорбции места сцепления частиц и препятствуя тем самым их сближению. Поэтому стабилизаторы суспензий являются также адсорбционными пластификаторами. Последние нашли очень широкое применение в гидротехническом строительстве, керамическом производстве, сооружении асфальтовых дорог, инженерной геологии, сельском хозяйстве с целью улучшения структуры почвы и др. [c.35]

    Связь между стабилизирующей способностью ПАВ и их пособностью образовывать структурно-механический барьер -е форме УМЭ. Эту связь можно показать, измеряя Рт фанзовой пленки УМЭ, образовавшейся в статических условиях [c.196]

    Наряду с термодинамическими факторами устойчивости, к которым следует отнести двойной электричес1й1Й слой и сольватную оболочку вокруг коллоидной частицы, на устойчивость коллоидных систем может в иять и прочность структурно-механического барьера, возникающего по тем или иным причинам на поверхности частицы. Этот фактор, согласно П. А. Ребиндеру, нельзя назвать термодинамическим, поскольку при удалении или разрыве оболочки, представляющей структурно-механический барьер, она не обязательно должна восстанавливаться самопроизвольно. Кроме того, у этой оболочки отсутствует равновесие с окружающей средой. [c.283]

    А. Б. Таубманом с сотр. показано, что устойчивые эмульсии могут образовываться также в результате возникновения на по-поверхности капелек основной эмульсии....нескольких слоев микрокапелек, служащих структурно-механическим барьером. Такие микрокапельки возникают вследствие явлении" турбулентности у поверхности капелек основной эмульсии, обладающей малым межфазным натяжением. [c.374]

    Наличие структурно-механического барьера, как отмечает Ребнндер, становится достаточным только тогда, когда на наружной поверхности такого адсорбционного слоя поверхностная энергия достаточно мала. В обратном случае, при наличии хотя и структурированной, но не лиофильной, а лиофобной оболочки коагуляции — вторичная флоккуляция — происходит путем сцепления оболочек наружными поверхностями. [c.242]

    На поверхности капелек эмульсии образуется адсорбционный достаточно сольватиронанпый слой молекул эмульгатора (структурно-механический барьер), обладающий повышенной вязкостью и упругостью, препятствующий вследствие этого агрегированию и слиянию капель. Этот фактор особенно важен для устойчивости эмульсий, стабилизованных высокомолекулярными соединениями и неионогеннымп поверхностно-активными веществами. [c.21]


Смотреть страницы где упоминается термин Структурно-механический барьер: [c.43]    [c.20]    [c.68]    [c.295]    [c.260]   
Смотреть главы в:

Коллоидная химия 1992 -> Структурно-механический барьер


Курс коллоидной химии 1974 (1974) -- [ c.260 ]

Коагуляция и устойчивость дисперсных систем (1973) -- [ c.115 ]

Основы жидкостной экстракции (1981) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Барьер

Гелеобразные защитные слои. Структурно-механический барьер

Кинетика экстракции в перемешиваемых системах при наличии структурно-механического барьера

Кинетика экстракции при образовании структурно-механического барьера

Молекулярная диффузия через неизменный структурно-механический барьер

Роль структурно-механического барьера в устойчивости концентрированных эмульсий

Структурно-механический барьер как фактор устойчивости концентрированных эмульсий

Теория квазиспонтанного эмульгирования как продолжение и развитие теории структурно-механического барьера

Экстракция при образовании структурно-механического барьера СМБ



© 2025 chem21.info Реклама на сайте