Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фенольные соединения животного происхождения

    I III. ФЕНОЛЬНЫЕ СОЕДИНЕНИЯ ЖИВОТНОГО ПРОИСХОЖДЕНИЯ [c.91]

    Аминоспирты животного происхождения представлены катехоламинами, осуществляющими регуляцию функций эндокринных желез (надпочечники, щитовидная железа) и передачу нервных импульсов. В первом случае они рассматриваются как гормоны, во втором случае — как нейромедиаторы. Соединения этой группы, кроме спиртового гидроксила, имеют еще и фенольные функции. Биогенные катехоламины представлены тремя [c.30]


    Особенно эффективно применение ТСРХ при разделении смесей свободных метаболитов, например карбоновых кислот или фенольных соединений. Метод также очень полезен для разделения свободных соединений этого типа и метаболитов, которые сопряжены с определенными веществами животного или растительного происхождения, например с глюкозой, аминокислотами или с глюкуроновой кислотой. Сопряженные мета- [c.127]

    Фенолы животных тканей отличаются от фенолов растений в двух отношениях. Во-первых, они гораздо менее многочисленны и, во-вторых, обладают обычно совершенно определенными метаболическими ф)ункциями (см. гл. 12). Поэтому их распределение не представляет, по-видимому, интереса с точки зрения систематики и нижеследующий краткий обзор включен только для полноты картины, а также из-за нескольких любопытных побочных аспектов, имеющих отношение к растительным фенолам. Фенольные соединения животного происхождения распадаются на 8 групп простые фенолы, фенольные аминокислоты и их непосредственные производные, пигменты насекомых, хиноидные пигменты морских ежей и некоторых насекомых, убихинон, стероидные половые гормоны и добавочные флавоны крыльев бабочек. [c.91]

    Во многих странах стабилизация жиров и масел, особенно животного происхождения, достигается добавлением антиоксидантов фенольного характера. В качестве антиоксидантов разрешается применять довольно небольшой круг соединений и в очень малых концентрациях—0,01—0,05%. [c.113]

    К флавоноидам (от латинского flavus — желтый) относятся природные полифенолы, синтезируемые через ацетат/малонат и шикиматный пути высшими растениями, включая мхи и папоротники, и некоторыми микроорганизмами. В основе молекулы флавоноидов и их конденсированных производных — проциани-динов — лежит так называемый СбСзСб-скелет. Флавоноиды являются наиболее распространенными фенольными соединениями растительного происхождения. В настоящее время известно более 4000 различных флавоноидов, имеющих не только желтую, но и интенсивно красную и голубую окраску, а также не имеющих окраски [1]. В отдельном растении могут образовываться и содержаться различные флавоноиды, и их качественный состав может быть использован как классификационный признак при описании родов и семейств. Роль флавоноидов в растениях важна и многообразна, и первое, что следует отметить, благодаря наличию интенсивной окраски они создают цветовое разнообразие растительного мира. Окраска растений, кроме эстетического, эмоционального воздействия на человека играет в природе важную утилитарную роль, участвуя в установлении экологических взаимосвязей между микроорганизмами, растениями и животными. Ярко окрашенные цветы служат визуальным сигналом для опыляющих эти растения насекомых, а не менее яркая окраска семян и плодов привлекает птиц и других животных, способствуя воспроизведению растений и их распространению на новые территории. Кроме воздействия на зрительный аппарат, флавоноиды могут осуществлять химическую передачу информации, привлекая (аттрактанты) или отталкивая (репелленты) другие организмы, воздействуя на их органы вкуса и обоняния. Например, кате-хины, благодаря терпким, вяжущим свойствам, защищают растения от вредных насекомых [2]. В зеленых растениях флавоноиды участвуют в некоторых реакциях световой фазы фотосинтеза, катализируя транспорт электронов и управляя ионными каналами, связанными с процессами фотофосфорилирования [2, 3]. Кроме [c.77]


    Число природных фенольных соединений растительного и животного происхождения оказалось столь большим, а функции их столь многообразными, что биохимическое изучение фенолов привлекло широкие круги исследователей. Были проведены работы по методам анализа и выделению природных фенолов различных классов, исследованию их физиологических свойств, изучению энзимологии и механизма процессов биосинтеза и метаболизма фенольных соединений. Этим проблемам посвящено большое число работ советских ученых (академик А. Л. Курсанов, М. Н. Занромётов и др.). Однако обобщающих трудов, затрагивающих разнообразные аспекты изучения фенольных соединений, оказалось сравнительно мало. [c.5]

    Глава 3, написанная Харборном и Симмондсом, посвящена описанию природных источников простейших фенолов, кумаринов, флавоноидов, халконов, антоцианов и других фенольных агликонов растительного и животного происхождения. Здесь собран большой справочный материал по химическим структурам различных фенольных соединений. Глава не претендует на какие-либо теоретические обобщения, однако является весьма ценным собранием информационного материала. Весьма близка по содержанию и характеру изложения глава 4 (Харборн), в которой трактуются вопросы строения фенольных гликозидов, сахаров, агликонов и указываются их природные источники (в основном, растительного происхождения). [c.6]

    Термин фенольные соединения объединяет широкий круг природных веществ [9], среди которых можно выделить две основные группы прость е фенольные соединения и флавоно-иды. К первой группе относятся фенолы, например пирокате хин и резорцин, фенолкарбоновые кислоты, например протокатеховая и сиреневая кислоты, а также оксикоричные кислоты и их лактоны, называемые кумаринами. К флавоноидам относятся широко распространенные водорастворимые пигменты — антоцианы и флавоны — и множество родственных соединений,, например изофлавоны, катехины, таннины и бифлавонилы [10]. Кроме того, в настоящей главе описано разделение пигментов растительного и животного происхождения, имеющих хиноидную структуру [11], и родственных им растительных ксантонов Разделение фенольных соединений, в состав которых входят азотсодержащие функциональные группы, в данной главе подробно не рассматривается, хотя эти соединения играют важную роль. [c.243]

    В связи с высокими ценами на органические растворители при выборе хроматографической системы для разделения фенолов необходимо принимать во внимание соотношение между стоимостью и эффективностью той или иной процедуры. Обращаясь к какому-либо новому методу разделения, нецелесообразно отказываться от уже существующих как от безусловно худших, особенно если они дешевле. Лигнаны, давно известные как соединения растительного происхождения, совсем недавно обнаружены и в тканях животных [142, 143]. Здесь следует отметить, что, хотя эти соединения можно разделить с помощью ВЭЖХ 144], авторы работ [142, 143] отдают предпочтение методу ГЖХ (лигнаны хроматографируют в виде триметилсилиловых эфиров на колонке с 0V-1 на газохроме Q). Вероятно, такой выбор обусловлен возможностью применения ГЖХ в сочетании с масс-спектрометрией — надежным и чувствительным методом обнаружения анализируемых соединений. Кроме того, для очистки экстрактов авторы указанных работ использовали хроматографию на сефадексе LH-20 и в тонких слоях. Исходя из этого, можно заключить, что, поскольку в тканях живых организмов могут встречаться различные фенольные соединения, нельзя ориентироваться на какой-либо один метод разделения таких сложных смесей. По меньшей мере в обозримом будущем для решения конкретных проблем в данной области исследований придется использовать ряд различных методов хроматографии. [c.273]

    В гликозида.х растительного происхождения агликонами часто являются фенольные соединения, в том числе различные флавоны и антоцианы (из цветочных красителей), полифенол флоретин (во флоридзине, ядовитом гликозиде из корней многих фруктовых деревьев) и индоксил (в гликозиде, из которого готовится краситель индиго). Гликозиды очень многих соединений, в состав которых входит глюкуроновая кислота, синтезируются в организмах животных и обнаруживаются в моче к таким соединениям относятся гликозиды, содержащие некоторые стероидные гормоны (гл. 44) и желчные пигменты (гл. 32). [c.48]


Смотреть страницы где упоминается термин Фенольные соединения животного происхождения: [c.116]    [c.358]   
Смотреть главы в:

Биохимия фенольных соединений -> Фенольные соединения животного происхождения




ПОИСК





Смотрите так же термины и статьи:

Фенольные соединения



© 2025 chem21.info Реклама на сайте