Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Последовательные превращения соединенна кальция

    Последовательное превращение соединений кальция [c.18]

    Цепь работы ознакомление с химическими процессами, протекающими при последовательных превращениях соединений кальция. [c.18]

    РАБОТАМ 3. ПОСЛЕДОВАТЕЛЬНЫЕ ПРЕВРАЩЕНИЯ СОЕДИНЕНИЙ КАЛЬЦИЯ [c.36]

    Соединение кальция, образующееся при разложении карбида кальция водой, вновь используется для производства карбида. Какие последовательные превращения необходимо для этого осуществить  [c.119]


    В олнение работы. Данная работа имеет своей целью ознакомление с некоторыми химическими процессами и лабораторными приборами на примере практического осуществления приводимого ниже ряда химических превращений соединений кальция. На схеме горизонтальными стрелками соединены последовательно получаемые вещества. Над стрелками проставлены вещества н факторы, обусловливающие протекание химической реакции. Под стрелками указано наименование протекающего процесса  [c.36]

    Крекинг газойля. Основная область применения цеолитных катализаторов в промышленности связана с процессом каталитического крекинга дистиллятов первичной перегонки нефти, содержащих алифатические, циклоалифатические (нафтеновые), олефиновые и ароматические углеводороды. При каталитическом крекинге нефтяных фракций протекают реакции дезалкилирования ароматических соединений, крекинга парафинов и олефинов, перераспределения водорода и циклизации олефинов. С основными представлениями о механизмах реакций, которые вносят вклад в процесс крекинга нефтяного сырья на цеолитных катализаторах, мы уже познакомились в предыдущих разделах этой главы. Однако использовать эти представления для анализа превращений отдельных классов углеводородов в крекинге все-таки очень трудно, так как продукты крекинга отличаются очень сложным составом. Первые работы Планка и Росин-ского [161, 297] по крекингу газойля, выкипающего в интервале 260—400° С, показали, что замена алюмосиликатного катализатора на цеолиты типа X дает следуюгцие преимущества 1) более высокую активность, которая сохраняется даже при повышенных содержаниях остаточного кокса, 2) более высокую селективность по бензину (Сз+) и снижение выхода газа (С4-) и кокса, 3) более высокую стабильность при термических и термопаровых обработках, характерных для процесса регенерации катализатора. Эти преимущества становятся еще более заметными при использовании в качестве катализаторов кальций-аммонийной и редкоземельно-аммонийной форм цеолита X. Моску и Моне [148] исследовали влияние жесткости термических и термопаровых обработок катализаторов РЗЭ-Х и РЗЭ- на эффективность крекинга газойля, выкипающего при 272—415° С. Они пришли к выводу, что удаление наиболее сильных кислотных центров в высокотемпературных условиях благоприятно сказывается на повышении выходов бензина. Для того чтобы рассмотреть причины повышения селективности по бензину, обратимся к последовательности превращения газойля, кинетическая модель которого [схема (71)] была разработана Уикманом и Нейсом [298]. В соответствии с этой моделью при первичном крекинге (эта стадия на схеме обозначена символом происходит образование бензина и некоторого количества газа, а также кокса, тогда как при вторичном крекинге (А ,) расщеплению подвергается бензин. [c.109]


    Наибольшее распросфанепие в качестве акцепторов получили окиси К, Ка, Са, Мп, Ш, Ре, нанесенные на силикагель, окись алюминия, алюмосиликат и т. д. Рассмотрение многочисленных данных, опубликованных в литературе [128, 139, 142 159, 160, 164—168], показывает, что эффективность окисных акцепторов на основе этих металлов убывает в последовательности, в которой они перечислены выше. Лучше всего изучены реакции дегидрирования в присутствии соединений К, Ка, Са, Мп. Каждый из данных акцепторов обладает определенными достоинствами и недостатками. Так, окислы и гидроокиси щелочных металлов являются самыми эффективными акцепторами Н1 [127, 139, 142, 164—166, 169, 170]. Они просты в изготовлении, безопасны в обращении, сравнительно дешевы и в незначительной степени катализируют побочные превращения углеводородов. Однако иодиды калия и натрия являются достаточно прочными соединениями и устойчивы при окислении. Регенерация молекулярного иода из К1 и Ка требует продолжительного времени. Окись кальция также является весьма эффективным акцептором Н1, однако в процессе дегидрирования СаО легко взаимодействует с двуокисью углерода, образующейся в качестве побочного продукта. В результате с увеличением в составе акцептора содержания карбоната кальция снижается селективность реакции и растет выход изоамиленов [171]. Окислы марганца обладают высокой механической прочностью, МпХз легко окисляется. При использовании марганцевого акцептора на поверхности аппаратуры образуется окисная пленка типа шпинели, предохраняющая металл от агрессивного действия паров Га и Н1 [163]. Однако в качестве акцепторов Н1 окислы марганца малоэффективны. Они активно катализируют реакции крекинга и, особенно глубокого окисления углеводородов [157, 163, 172—174]. Некоторые из указанных недостатков могут быть частично устранены, если использовать смешанный акцептор на основе нескольких окислов. Так, при введении в состав марганцевого акцептора 2,5% КааО повышается примерно на 3% селективность превращения к-бутана в дивинил и снижаются в 7 раз потери Н1 с контактным газом [163]. [c.151]

    В начале XX в. была решена исключительно важная проблема связывания атмосферного азота, что дало человечеству новый неисчерпаемый источник сырья для производства соединений азота. Известно, что над каждым квадратным километром земной поверхности в воздухе находется около 7500 тыс. т азота. Задача превращения этого недеятельного азота в химически активный решена последовательными усилиями многих ученых. В 1901 г. положено начало связыванию азота воздуха при помощи пламени электрической дуги (дуговой метод). В 1906 г. в заводском масштабе осуществлен цианамидный метод связывания атмосферного азота. Цианамид кальция представляет собой хорошее удобрение и может служить сырьем для получения аммиака. Наконец, в 1913 г. на основе многих работ было налажено синтетическое производство аммиака из элементов, которое получило бурное развитие и в настоящее время заняло главное место в производстве связанного азота. Одновременно был решен и вопрос [c.11]


Смотреть страницы где упоминается термин Последовательные превращения соединенна кальция: [c.69]    [c.316]    [c.56]    [c.56]   
Смотреть главы в:

Лабораторные работы по общей и неорганической химии -> Последовательные превращения соединенна кальция




ПОИСК





Смотрите так же термины и статьи:

Кальций превращения

Кальций соединения

Последовательное превращение соединений кальция



© 2025 chem21.info Реклама на сайте