Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие реакции, изученные электрохимически

    Электрохимическая кинетика — это область гетерогенной кинетики, в которой изучают скорости межфазных реакций между заряженными частицами. Электрохимические реакции идут под действием поляризующего источника тока, поставляющего электроны к одному из электродов (катоду) и отводящего от другого электрода (анода). Происходящие при этом реакции восстановления или окисления приводят к разложению растворенного электролита или растворителя (воды). Это явление, называемое электролизом, подчиняется законам Фарадея. Скоростью электрохимической реакции можно управлять с помощью делителя напряжения (см. рис. ХП.5 и XXV. 2). [c.291]


    Восстановление нитросоединений. — Нитробензол. При восстановлении достаточно сильными реагентами (например, хлористым оловом) нитробензол может быть превращен с высоким выходом в анилин. Применяя более слабые восстановители и подбирая соответствующую кислотность или щелочность реакционной смеси, можно получить ряд соединений, представляющих различные промежуточные стадии процесса восстановления нитробензола. Некоторые из этих соединений являются непосредственными продуктами реакции восстановления, тогда как другие образуются в результате вторичных превращений. Особенно тщательно изучены реакции электрохимического восстановления (Габер, 1900), где возможен точный контроль процесса путем регулирования напряжения, плотности тока и концентрации во- [c.212]

    С термодинамической точки зрения реакция обратима, если даже бесконечно малое изменение движущей силы приведет к изменению ее направления или, иначе говоря, реакция находится в состоянии равновесия. Это означает, что реакция достаточно быстро реагирует на любое малое изменение независимой переменной. Термодинамическая обратимость есть идеальное состояние, лишь приблизительно применимое к реальным системам. Если электрохимическая реакция протекает с большой скоростью даже при достаточно малом отклонении от состояния равновесия, ее можно назвать обратимой. Данную реакцию можно считать обратимой, если наблюдать за ней каким-либо одним способом (например, измерять потенциал в отсутствие тока), но она может проявлять заметное отклонение от обратимости, если ее изучать в других, медленно изменяющихся условиях, как в полярографии, а также стать полностью необратимой, если ее подвергать быстрым воздействиям, как в условиях некоторых высокоскоростных методов. [c.310]

    В научном отношении процессы при катодной защите от коррозии изучены более полно, чем при других способах защиты металлов. Коррозия металлов в водных растворах или грунтах является в принципе электрохимическим процессом, управляемым электрическим напряжением-потенциалом металла в растворе электролита. При снижении потенциала в соответствии с законами электрохимии движущая сила реакции должна уменьшаться, а следовательно, должна снижаться и скорость коррозии. Все эти взаимосвязи известны уже более ста лет и катодная защита в отдельных случаях осуществлялась на практике уже весьма давно, однако применение этого процесса в промышленных масштабах существенно задержалось. Способы катодной защиты в некоторых областях представлялись слишком чужеродными , а необходимость проведения электротехнических мероприятий вынуждала отказываться от их практического применения. Практика катодной защиты и на самом деле значительно сложнее ее теоретических основ. [c.17]


    Химические реакции кристаллических соединений графита полностью не изучены. Некоторые из приводимых ниже данных были рассмотрены раньще в связи с другими вопросами. В случае электрохимических соединений, таких, как бисульфат графита, реакция восстановления, протекающая на катоде или под действием химических реагентов, дает графит, содержащий небольшое количество остаточных молекул, как это отмечалось выше для остаточных соединений. Это обстоятельство необходимо иметь в виду при разработке методов химического анализа. Все галогены, за исключением фтора, можно удалить путем, нагревания или даже при достаточно продолжительном пребывании при комнатной температуре, однако остаточные молекулы удерживаются и в этом случае. Для удаления основной массы внедренного вещества из кристаллических соединений с некоторыми многоатомными молекулами требуется интенсив ое нагревание. Так, в некоторых специальных образцах у.глерода удерживается до 5% РеСЬ [882]. [c.156]

    Согласованность между физико-химическими свойствами катализатора № типом реакции, для которой он пригоден, была рассмотрена Беркманом, Морреллом и Эглоффом , которые изучили пространственную характеристику катализаторов в сочетании с другими факторами электронной конфигурацией, магнитной чувствительностью и положением в электрохимическом ряду. [c.63]

    Несмотря на то, что химические реакции тозилатов и других сульфоновых эфиров исследованы весьма детально, их электрохимическому поведению уделялось относительно мало внимания. Полярографическое исследование тозилатов в смесях спирта с водой на фоне подпетого тетраэтиламмония было выполнено Майрановским и Нейманом [19]. Они наблюдали единственную двухэлектронную стадию, которую приписали восстановлению эфира в сульфокислоту. Болдырев и сотр. [20] изучили восстановление эфиров тио-сульфокислоты на ртутном капельном электроде. Обнаружены две волны, причем потенциал второй волны зависит от структуры эфира. Ароматические эфиры восстанавливаются труднее алифатических. [c.364]

    Для изучения состояния поверхности металлов используют метод измерения емкости и сопротивления электродов в электролитах [58—61]. С этой целью обычно применяют мост переменного тока, в одно плечо которого включают исследуемую электрохимическую ячейку. Другое плечо представляет контур, состоящий из параллельно соединенных конденсатора и сопротивления (рис. 15). Предполагается, что при уравновешивании моста емкость конденсатора определяется двойным электрическим слоем на поверхности электрода, а сопротивление характеризуется скоростью электрохимических реакций. Измерения производят при помощи переменного тока различной частоты. Изменение емкости и сопротивления электрода изучают в зависимости от потенциала. Сдвиг потенциала электрода достигается путем поляризации его постоянным током. [c.29]

    Во-первых, стало более ясным, что потенциостатическим методом можно и нужно изучать кинетику не только ионизации металлов, но и других электрохимических реакций. [c.140]

    Для исследования нестабильных промежуточных продуктов электрохимической реакции можно использовать вращающийся кольцевой электрод, представляющий собой систему из двух независимых электродов — диска и кольца, расположенных в одной плоскости и разделенных узкой изолирующей прокладкой [88]. Образующиеся в процессе электролиза на дисковом электроде конечные и промежуточные продукты могут быть изучены при их восстановлении или окислении на кольцевом электроде снятием поляризационной кривой с предельным током диффузии по исследуемому веществу. Электрод (см. рис. 36, б) состоит из латунного цилиндра 1 с припаянным платиновым диском и трубки 3 из латуни с припаянным кольцом из платины, изолированных друг от друга тонкой (0,25 мм) втулкой 2 из фторопласта. Наружная оболочка электрода 4 также изготовлена из фторопласта металлические части плотно запрессованы во фторопластовые обоймы. Шпиндель 8, в который ввинчивается электрод, имеет изолирующие втулки 5 между внутренней 7 и внешней 6 его частями, что обеспечивает независимый подвод тока к диску и кольцевому электроду. Теория конвективной диффузии к вращающемуся диску разработана Левичем [89, 90]. [c.97]

    Отличительной чертой изучения электрохимической кинетики за последние 20 лет явилось развитие теоретических и экспериментальных методов, которые позволяют изучить отдельные стадии сложных последовательных реакций, включающих электродный процесс, т. е. тот тип реакций, который можно рассматривать при помощи некоторых специальных приемов гетерогенной химической кинетики. Все возрастающий успех электрохимиков в решении таких проблем мог бы обеспечить материал не только для главы в настоящей серии обзоров, но и для целой книги, если бы было предпринято соответствующее многотомное издание. Однако чувствовалось, что необходимость подготовки краткого издания диктовалась не только чисто экономическими соображениями, но также и двумя другими причинами во-первых, все еще необходимо установить правильное соотношение между теорией и экспериментом и, во-вторых, достаточно понятное изложение материала в данной главе могло бы быть очень полезным с педагогической точки зрения. В данной главе, за некоторым исключением, рассмотрен ряд электрохимических методов в предположении, что лица, начинающие заниматься электрохимической кинетикой (но уже имеющие некоторые представления об элементарных методах, особенно о методах, связанных с переносом электрона), получат общее представление о применяемых методах, экспериментальные возможности которых во многих случаях недостаточно полно используются. В данной главе не будут детально описаны все конкретные исследования, которые с большей или меньшей убедительностью привели к представлениям о механизмах отдельных реакций. Состояние проблемы требует дальнейших точных исследований, и авторы полагают, что наступило время для планирования и выполнения экспериментальной работы такого характера. [c.273]


    Ранее Лунд изучил целый ряд реакций электрохимического восстановления различных соединений в присутствии алкилгало-генидов, приводящих к алкилированным продуктам [47]. Этим путем были алкилированы ароматические углеводороды [48], гетероароматические соединения [49] и некоторые другие субстраты [47]. [c.117]

    Известно, что ионы хрома(П) в водных растворах неустойчивы и вступают в различные реакции, проявляя восстановительные свойства. Однако в диметилсульфоксиде и других подобных органических растворителях ионы хрома(П) достаточно устойчивы, и электрохимическое генерирование этих частиц обеспечивает их сравнительно высокую концентрацию в растворе. Изучено [104] образование комплексных частиц хрома(П) с этилен- и ди-этилендиамином в диметилсульфоксиде при обратимом восста- [c.139]

    Если для химии вообще характерно такое положение, то в органической электрохимии оно выражено наиболее ярко. Дело в том, что электрохимические процессы слагаются из большого числа элементарных физических и физико-химических стадий. И, кроме того, электрохимические явления происходят на границе раздела фаз, что резко усложняет механизм процесса, ибо начинают играть роль такие физические и физико-химические стадии, как подача веществ в реакционное пространство и отвод из него, адсорбция, хемосорбция, десорбция и т. д. Для сравнения скажем, что теория гетерогенного катализа, протекающего на границе раздела фаз, развита гораздо слабее, чем теория гомогенного катализа. Даже простейшая из электрохимических реакций — реакция разряда иона водорода —до конца не изучена, до сих пор ученые не пришли к единому мнению о механизме этой реакции до сих пор в теоретической электрохимии противостоят друг другу несколько теорий, объясняющих разряд водорода теория замедленного разряда, рекомбинационная теория замедленного переноса протона и др. [c.15]

    Как мы говорили, конец XIX в. был периодом расцвета электрохимии органических соединений. К этому времени реакция анодной конденсации по Кольбе стала уже хорошо известным, классическим примером электрохимического синтеза. Однако практического значения данная реакция не имела, так как была изучена на примере анодной конденсации только алифатических моно-карбоновых кислот, в результате которой образуются углеводороды. Электросинтез последних не представляет особого интереса — эти продукты могут быть выделены из ископаемых видов сырья или же получены другими, более простыми способами. [c.96]

    Адсорбционное торможение электрохимических реакций изучено М. А. Лошкаревым и рядом других исследователей. На рис. 61 приведены полученные им иолярограммы разряда иояов ряда металлов из расгаоров [c.103]

    Адсорбция многих органических веществ в области ф<фо на металлах группы платины сопровождается деструкцией молекул, т. е. хемосорбция имеет диссоциативный характер. Для идентификации хемосорбарованных частиц ислользова ряд электрохимических методик, применение которых в области высоких потенциалов затруднено (см. [11]). Информация о строении адсорбата может быть получена и на основе анализа продуктов препаративного электросинтеза, так как стадия адсорбции органического акцептора является в ряде случаев необходимым условием протекания реакций присоединения электрохимически генерируемых радикалов Ri [1, 91. Этим способом изучено поведение диенов-1,3 плоть до 3 в [1, 60, 53]. Во (всех исследованных реакциях электрохимического радикального присоединения адсорбированная молекула диена включается в состав аддуктов в неизменном виде [1, 118, 122, 133—142]. Аналогичные результаты получены для этилена (см. [11]). Тщательный анализ продуктов электролиза не зафиксировал в заметных количествах соединений, образование которых можно трактовать как результат взаимодейсгоия Ri с осколками адсорбированных молекул. Таким образом, адсорбция на платине при высоких потенциалах носит ассоциативный характер, по крайней мере для той части адсорбата, которая вступает в реакции присоединения. Для других со-.единений природа хемосорбированных частиц не установлена. [c.288]

    Из металлов первой электрохимической группы наиболее полно изучена платина, хотя из-за высокой чувствительности ее водородного потенциала к примесям полученные данные не отличаются хорошей воспроизводимостью. Н( сомненно, что в области положительных потенциалов (не очень удаленных от обратимого потенциала водородного электрода) на поверхности платины всегда присутствует адсорбированный водород. Это установлено измерением мкости, а также другими методами. Так, количество адсорбированного водорода можно найти для каждого значения потенциала при помощи кривых заряжения, т. е. кривых, передающих изменение потенциала электрода с количеством подведенного электричества чли (при постоянной силе тока) с течением времени. При таком кулонометрическом определении количества водорода (или иного электрохимически активного вещества) необходимо, чтобы его выделение (или растворение) совершалось со 100%-ным выходом по току. Все возможные побочные реакции — электровосстановление или выделение кислорода, катодное восстановление или анодное окисление органических веществ и других примесей — должны быть полностью исключены. Этого можно достичь двумя методами. В первом из ннх сила накладываемого на ячейку тока настолько велика, что значительно превосходит предельные токи восстановления и окисления примесей их вредное влияние поэтому не проявляется. Заряжение электрода проводят с большой скоростью, а кривую заряжения регистрируют автомати- [c.414]

    Еще в 1839 г. Грове получил ток от кислородно-водородного элемента. Однако он не представлял себе возможности практиче,-. ского использования подобного источника тока. Попытку создания топливного элемента, пригодного для практики, впервые осущест-5 вил Павел Николаевич Яблочков. Им были разработаны в 1895 г." элементы с газовыми электродами. Теоретические вопросы, связан- ные с созданием топливных элементов, изучали многие крупные зарубежные ученые — Оствальд, Нернст, Грубе и другие и СССР — Фрумкин и ряд ученых его школы. Особенно большое внимание разработке топливных элементов стали уделять после второй мировой войны. Над этой проблемой работает ряд коллек-] тивов исследователей. Однако применение топливных элементов, пока еще очень ограничено. В настоящее время называют топливными элементами все элементы, в которых активные материалы не заключены в самом элементе, а подаются в него непрерывно. Системы из топливных элементов и относящихся к ним вспомогательных устройств, например для регулировки давления газов, называют электрохимическими генераторами энергии. В качестве окислителя на положительном электроде в топливных элементах чаще всего используют кислород. Существуют элементы с жидкими окислителями — азотной кислотой и др., но они не получили пока распространения. Работа кислородного электрода была рассмотрена ранее. На отрицательном электроде в качестве активных веществ (топлива) используют газообразные (водород), жидкие (метанол, гидразин и др.) и твердые вещества. Некоторые виды топлива (метан, уголь) электрохимически инертны, их ионизация протекает так медленно, что практически процесс не осуществим без принятия специальных мер. Для ускорения реакции используют два способа электроды изготавливают из веществ, каталитически ускоряющих процесс, и работа ит при повышенных температурах. [c.352]

    Метод осциллографической полярографии с наложением переменного тока (рис. 268), с одной стороны, использует сравнительно простую аппаратуру, а с другой, обладает всеми достоинствами методов с переменной поляризацией, например чувствительностью к изменению адсорбции веществ на электроде (рис. 269). Кроме того, этот метод позволяет изучать влияние накопления продуктов электрохимической реакции на поверхности электрода, а также быстро получать сведения об обратимости процесса (рис. 270). Снятие dEldt — ii-кривых вначале применялось исключительно для решения теоретических вопросов полярографии, но в последние годы этот метод получает все более широкое распространение и в аналитической практике [62—66]. [c.495]

    Нитросоединения принадлежат к числу первых и наиболее хорошо изученных объектов органической электрохимии. Однако применение спектроэлектрохимических методов и сульфолана как растворителя, стабилизирующего промежуточные ион-ради-кальные частицы, позволило получить некоторые новые сведения об электровосстановлении нитросоединений [32]. В этих условиях нитробензол давал одну одноэлектронную волну, а га-нитробен-зальдегид — две одноэлектронные, осложненные последующей химической реакцией. Механизм с промежуточным радикал-анионным продуктом был подтвержден моделированием реакций с помощью компьютера и специально разработанного метода дифференциальной обработки спектроэлектрохимических данных. Промежуточные продукты восстановления этих нитросоединений были предварительно изучены с помощью УФ- и ЭПР-спектроско-нии. Радикал-анион, образующийся в электрохимическом процессе при захвате одного электрона, имел в УФ-спектре характерную полосу при 464 нм (в диметилформамиде), описанную ранее другими исследователями, что облегчило его спектроэлектрохимическую индикацию на оптически прозрачном электроде площадью - 0,3 см , состоящем из платиновой пленки толщиной 15—30 нм, осажденной на кварцевой пластинке. На электрод накладывали потенциал, на несколько сот милливольт больший, [c.109]

    Была сделана попытка определить потенциостатическим путем отдельно анодную и катодную стадии реакции гидрирования, которым, по всей вероятности, свойствен электрохимический механизм. Такими реакциями являются гидрирование нитросоединений, окисей азота, а также азотистой и азотной кислот. Все эти реакции на твердых гладких электродах подробно изучены, особенно с точки зрения электродной кинетики и механизма реакции. В литературе опубликованы результаты исследования кинетики восстановления азотной кислоты на некоторых металлах. Однако при гидрировании на порошкообразных катализаторах в суспензии передача зарядов несколько осложняется. При использовании катализаторов в виде прессованных таблеток могут возникнуть заметные градиенты концентрации. Во избежание обоих недостатков мы выбрали следующий метод. На рисунке 6 изображена ячейка со стеклянным фильтром, в котором в качестве вспомогательного электрода помещается позолоченная платиновая сетка. При отсасывании электролита на фильтре оседает слой исследуемого катализатора. Создаются условия, при которых обеспечивается подача с постоянной скоростью свежей порции электролита, насыщенного одним из компонентов реакции — водородом. В качестве субстрата выбран сантимо-лярный раствор азотистой кислоты в 2н. Н2804. Растворенный кислород удаляется из электролита током аргона. Скорость электрохимического окисления водорода, а в другом растворе — восстановление азотистой кислоты измеряли потенциостатическим методом. [c.105]

    Систематические исследования, проведенные со многими соединениями [5—11], показали, что ни одна из выдвинутых гипотез не является характерной особенностью для летучих ингибиторов, хотя некоторые из перечисленных механизмов иногда и проявляются. Изучая электрохимию ингибированных электролитов, связь между составом, структурой и физи-ко-химическихл ги свойства ми органических соединений, с одной стороны, и их защитными свойствами — с другой, удалось показать, что летучие ингибиторы предотвращают коррозию главным образом благодаря изменению кинетики электрохимических реакций, обусловливающих коррозиониый процесс. На это указывает, в частности, сильное смещение в положительную сторону стационарного потенциала стали, выдержанной в атмосфере л-етучих ингибиторов, а также торможение анодной реакции ионизации металла и наступление пассивности [5, 6]. [c.157]

    Процессы электрохимического замещения и присоединения в последние годы, по-видимому, изучались наиболее интенсивно. Большое количество работ выполнено по исследованию процессов электрохимического галоидирования, среди которых первое место занимает электрофторирование органических соединений различных классов — углеводородов [127—137], карбоновых кислот, эфиров, спиртов, ангидридов [138—148], гетероциклических соединений [149—151], аминов и некоторых других азотсодержащих соединений [152—156], а также сульфонов [157]. В некоторых работах приводятся сведения о конструкциях электролизеров, в том числе и укрупненных [132, 152], рассматривается поведение никелевого анода [158, 159], являющегося лучшим среди всех других анодов. Отмечается, что износ никелевых анодов связан с наличием во фтористом водороде (основном электролите в процессах фторирования) примесей фторида натрия. Уменьшения коррозии анода можно добиться путем проведения процесса при непрерывном протоке электролита через электролизер [160]. Несомненно, для более свободной ориентации в довольно значительном количестве исследований весьма ценным пособием является общая сводка работ по электрофторированию, составленная Ватанабэ за 1955— 1967 гг. [161, 162], а также обзор Шмейзера и Губера по электрохимическому фторированию азотсодержащих соединений [163]. Рассмотрим некоторые характерные реакции электрохимического фторирования, описанные в публикациях последних лет. [c.21]

    Основным тезисом различных теорий радикалов и особенно той электрохимической ее модификации, которую развивал Берцелиус и его сторонники, было утверждение о неизменности радикалов во время химических реакций. Однако уже в 1834 г. Дюма, пытаясь-экспериментально подтвердить теорию этерина и изучая продукты реакции хлорирования, обнаружил, что хлор может замещать водород в радикале, эквивалент иа эквивалент. Подобного рода факты замещения, обобщенные Дюма в виде нескольких эмпирических правил, привели его и Лорана к попыткам создать теорию, согласно которой простые молекулы являлись как бы типом (еще лучш сказать прототипом) более сложных генетически с ними связанных соединений. В основу и теории ядер Лорана, и теории типов Дюма была положена мысль о превалирующем значении пространственного расположения атомов. Дюма например, следующим образом пояснял (1840 г.) основную идею своей теории Замещение одного элемента другим, эквивалент на эквивалент, есть результат, сохранение типа — причина. Органическая молекула, органический тип составляют здание, в котором можно заменить кирпичи водорода кирпичами хлора, брома или кислорода, без того чтобы внешние отношения здания (т. е. иными словами, основные химические свойства. — Г. Б.) от этого изменились. Но надо, когда удаляют кирпичи водорода, что-нибудь класть на их место, иначе здание обрушится или перестроится [16, с. 178]. [c.25]

    Из полиядерных углеводородов в реакции электрохимической дегидродимеризации изучены нафталин, антрацен [84], 9-фенилант-рацен, 9,10-диметил антрацен, 10-метокси-9-метилантрацен и 10-ме-тилен-9-антрон, а также кумарин. Выходы дегидродимеров, образующихся при окислении полиядерных углеводородов, невелики, за исключением некоторых случаев, когда наряду с процессами депротонизации и димеризации происходит окисление промежуточных или конечных продуктов. Типичным примером такой реакции, имеющей, по-видимому, препаративное значение, является окисление антрацена в смеси ацетонитрил — этиловый спирт, содержащей в качестве электролита перхлорат лития. При этом кроме дегидродимера— биантрона — образуется тример. Выход димерных продуктов окисления антрацена в оптимальных условиях достигает 91%. С высокими выходами образуются дегидродимеры и при окислении его производных 9,10-диметилантрацена, 10-метокси-9-метилантрацена и некоторых других. [c.318]

    Используя разнообразные полярографические и близкие к им методы, можно изучать реакции со временем полупревращения вплоть до 10 с, а применение современного метода [20], известного под названием фарадеевское выпрямление высокого разрещения , расширяет этот интервал до 10 с. Однако интерпретация кинетических результатов для реакции переноса протона, полученных из электрохимических измерений, связана с определенными трудностями. Во-первых, соотношение между наблюдаемыми величинами и химическими константами скорости сложно, и процедура вычисления обычно содержит физ.чческие или математические допущения и поправки. Во-вторых, полученная информация otнo иT Я к приэлектродному слою, который может быть очень тонким, вплоть до 10 A для наиболее быстрых из исследуемых реакций. Применимость обычных законов диффузии в этих условиях вызывает сомнение кроме того, возможно, что вклад в скорость реакции могут вносить и адсорбированные молекулы. Более того, градиент электричеокого потенциала в этих слоях может быть настолько высоким, что будет приводить к сильному увеличению скорости диссоциаций. Эти неопределенности, возможно, объясняют тот факт, что константа скорости, полученная из электрохимических измерений, не всегда согласуется с константами, измеренными другими методами сказанное относится, в частности, к некоторым ранним исследованиям, в которых не принимали во внимание вышеупомянутые осложнения, и приведенные в них константы скорости иногда слишком высоки, чтобы бы ь физически оправданными. Однако несомненно, что тщательно продуманные электрохимические экоперименты могут привести к надежным результатам, особенно по сравнительным скоростям серии сходных реакций переноса протона. Некоторые трудности возникают и потому, что измерения часто удобно проводить в присутствии высоких концентраций инертного электролита (например, 1М. КС1). Следовательно, полученные константы скорости нельзя непосредственно сравнивать с результатами измерений при низкой ионной силе. [c.145]

    К этому времени относится начало научной деятельности Берцелиуса., Б одной из первых работ, предпринятой им совместно с Гизингером, он изучал действие электрического тока на растворы различных неорганических веществ результатом явилась его электрохимическая теория, которая господствовала в течение десятков лет во всей химии. По это теории различные химические атомы при соприкосновении друг с другом, получают два полюса, подобно магнитам. Однако один полюс обычно значительно сильнее другого, вследствие чего атомы реагируют. униполярно — электроположительно или электроотрицательно. От величины заряда зависит способность отдельных химических элементов входить, в химические реакции. Частицы, заряженные положительно, реагируют с отрицательно заряженными частицами противоположные электричества отчасти нейтрализуют друг друга, и образовавшееся соединение является электроположительным или отрицательным в зависимости от того, обладал ли один из обоих соединившихся элементов избытком положительного или отрицательного электричества. Таким образом объяснялось образование соединения из элементов возникновение из двух соединений двойного соединения толковалось аналогично при этом противоположные электричества, свойственные данным двум соединениям, также частью или почти полностью компенсируются. [c.41]

    Адсорбция поверхностно активных веществ, меняя величину и знак -фгпотенциала, может существенно влиять на скорость электрохимической реакции. Торможение поверхностно активными веществами реакции восстановления различ ных ионов начали изучать только в последние годы. Систематические исследования в этой области были сделаны А. И. Фрумниньсм, О. А. Есиным, М. А. Лошкаревым, Т. А. Крюковой и другими исследователями в нашей стране и за рубежом. [c.342]

    ВИЯХ эксплуатации металлоизделий. К их числу можно отнести реакции электрохимического восстановления радикалов — первичных продуктов окисления масел на электроотрицательных металлах с низкой работой выхода электрона или (в случае катодной поляризации металла) от внешнего источника тока восстановления маслорастворимых ПАВ, содержащих нитрогруппы электрохимического окисления серосодержащих веществ, вплоть до суль-фонов и сульфокислот и пр. Применительно к химмотологии и трибологии электрохимические поверхностные реакции практически не изучены, но их значение трудно переоценить. Помимо влияния на коротквживущие и долгоживущие стабильные свободные радикалы, на процессы окисления и старения смазочных материалов эти реакции влияют на их защитные, антифрикционные и другие поверхностные свойства. Так, при восстановлении нитрогрупп на катодных участках металла возникают токи, сдвигающие потенциал металла в положительную сторону, что может привести к торможению анодного процесса растворения металла за счет смещения стационарного потенциала к потенциалу полной пассивации [50]. [c.30]

    Одновалентные катионы тина Li" , являющиеся жесткими кислотами, как и протон, могут участвовать в нейтрализации анион-радикалов. Катионы фона, способные к образованию йонных пар, также могут влиять на механизм электродных реакций. С помощью добавок доноров протонов обычно легко устано-бить, является ли промежуточно образующаяся частица анион-радикалом или дианионом. Роль среды, которая может иногда существенно влиять на протекание электродных процессов, изучена еще недостаточно. Растворитель или непосредственно участвует в электродном процессе, являясь донором или акцептором йромежуточно образующихся частиц, или оказывает влияние на кинетику переноса электрона в результате того, что расстояние Между электродом и центром реагирующей частицы в переходном состоянии также зависит от природы растворителя. Электрохи-Мики-органики постоянно прилагают усилия, чтобы найти растворитель с низкой кислотностью и электрофильностью для Восстановления и низкой основностью и нуклеофильностью для окисления. Примером может служить использование довольно редко встречающегося в электрохимической практике растворителя сульфолана, в котором скорости как гетерогенного переноса Заряда, так и гомогенных химических реакций сильно замедлены по сравнению с другими растворителями, что позволяет увеличить время жизни промежуточных анаон-радикальных частиц [111. [c.8]

    Устойчивый анион-радикал, охарактеризованный спектром ЭПР, был получен при восстановлении 4-замещенных 2-фенилхино-лина в диметилформамиде по первой одноэлектронной обратимой волне [68]. Вторая одноэлектронная необратимая стадия, как считают авторы, приводит к образованию дианиона. Восстановление этих соединений изучено целым комплексом электрохимических методов, а также спектрально (УФ, ЭПР). Подобному изучению были подвергнуты и 4-замещенные 2-фенилхинолин-1-оксида, восстанавливающиеся в апротонной среде в три или четыре стадии [69]. По первой обратимой одноэлектронной волне они также образуют устойчивое анион-радикальное промежуточное соединение (циклические кривые, спектры ЭПР). Циклическая вольтамперометрия позволяет обнаружить протекание химической реакции, следующей за переносом второго электрона, в результате чего образуются свободные основания, которые электроактивны при тех же потенциалах. В протонодонорных средах наблюдаются две двухэлектронные волны, соответствующие образованию свободного основания, а затем 1,4-дигидро-хинолина, или суммарная четырехэлектронная волна. На основании этих и других экспериментальных фактов авторы предлагают многостадийную схему процесса и обсуждают влияние заместителей на направление реакций. [c.124]

    Скорость акватации комплексов o(NHз)5Br +, установленная по изменению концентрации бром-ионов с помощью индикаторного Ag I AgBr I Вг -электрода, в неперемешиваемом растворе на порядок превышает скорость указанной реакции, найденную спектрофотометрическим методом (по изменению концентрации реагирующих частиц в объеме раствора). В перемешиваемом растворе оба метода дают совпадающие значения скорости акватации комплексов Со(МНз)5Вг +, и это свидетельствует о каталитическом ускорении поверхностью бромсеребряного электрода указанной реакции (в неперемешиваемом растворе концентрация бром-ионов в приэлектродном пространстве существенно возрастает по сравнению с толщей раствора) [148]. Приведенные примеры показывают необходимость специальных исследований возможного каталитического ускорения поверхностью металлических и других электродов медленных объемных химических реакций, кинетика которых изучается методами потенциометрии, электропроводности либо другими электрохимическими методами. [c.79]

    Многочисленные лабораторные, стендовые и натурные испытания подтверждают, что трение и другие физические процессы в сочетании с химической и электрохимической коррозией приводят к наибольшему износу машин и механизмов, причем электрохимические факторы часто имеют превалирующее значение. На специальном стенде, обеспечивающем возвратно-поступательное движение ползуна в контакте с калиброванным цилиндром, были проведены исследования механического и коррозионно-механического износа стали [35] . Показано, что факторами электрохимической коррозии могут определяться общие закономерности и интенсивность износа трущейся пары. Изучая коррозионный износ в смазочных маслах на специальном трибометре (медный цилиндрический вращающийся образец в контакте со стальным диском), Б. Дмитров пришел к выводу, что трибомеханические нагрузки усиливают процесс коррозии в результате активации металла и разрушения защитного слоя [99]. При правильно выбранных композициях присадок к маслам развитие трибохимических реакций, наоборот, способствует уменьшению износа трущейся пары в результате интенсивного образования хемосорбционных защитных пленок. [c.111]

    Эта глава посвящена газовым электродам, в них газ является реаген-тодг. В последнее время в некоторых работах изучаются жидкостные электроды, в которых газ образуется как побочный продукт электрохимической реакции. Такие электроды названы ншдкостно-газовыми [88]. Образующийся газ может уменьшить электропроводность системы, вызвать конвекцию жидкости, экранировать часть рабочей поверхности электрода. В работе [88] экспериментально исследована модель жидкостно-газового электрода никелевая проволока в стеклянном капилляре, заполненном электролитом. Изучены режим газоудаления, газосодержапие и газораспределение по глубине электрода, эффективная электропроводность системы и другие величины. [c.328]

    По чувствительности и точности анализа хронопотенциометрия близка к полярографии, но уступает кулонометрии [1]. Аналитические возможности этого метода мало изучены даже для хорошо исследованных другими электрохимическими методами элементов. Метод хронопотенциометрии (ХП) основан на применении постоянного или функционально заданного тока, проходящего через электрохимическую ячейку, и измерении потенциала рабочего электрода Е как функции времени t. Полученные хроно-потенциограммы могут быть использованы для изучения кинетики и механизма электрохимических реакций и определения концентрации элект-роактивного вещества. [c.257]


Смотреть страницы где упоминается термин Другие реакции, изученные электрохимически: [c.151]    [c.99]    [c.139]    [c.134]    [c.109]    [c.226]    [c.516]    [c.139]    [c.318]    [c.253]    [c.139]    [c.56]    [c.215]   
Смотреть главы в:

Быстрые реакции в растворах -> Другие реакции, изученные электрохимически




ПОИСК





Смотрите так же термины и статьи:

Электрохимические реакции



© 2025 chem21.info Реклама на сайте