Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вторичные реакции влияние при крекинге

    Разумеется, существуют многочисленные другие факторы, связанные с характеристиками катализатора, которые влияют на реакции крекинга и, следовательно, косвенно оказывают влияние и па вторичные реакции. Некоторые из этих факторов подробно рассмотрены в литературе [48, 56]. К ним, в частности, относятся а) тип катализа тора б) удельная поверхность в) размер зерна г) распределение по размерам пор д) отравление серой е) отравление металлами ж) отравление азотом. Из этих факторов единственным, оказывающим непосредственное влияние на те явления, которые можно назвать вторичными реакциями, по-видимому, является отравление катализатора металлами. Отравление катализатора щелочными металлами частично ослабляет кислотный характер катализатора и тем самым снижает его активность во всех важных для промышленного процесса реакциях. Следовательно, продукты, образующиеся при крекинге на катализаторе, отравленном щелочными металлами, будут по своему характеру и составу приближаться к продуктам термического крекинга. Обычно ка катализаторах отлагаются металлы из аипарат фы установки или содержащиеся в сырье железо, никель, ванадий и медь. Известно, что при условиях, обычно существующих в системе каталитического крекинга, тяжелые металлы способны разлагать углеводороды на углерод и водород. Поэтому высказывалось предположение [39], что эта реакция просто налагается на обычные реакции крекинга. Однако, поскольку алкены обладают высокой реакционной способностью и имеются основания предполагать, что они наиболее подвержены разложению, влияние металлов можно рассматривать как ре зультат непосредственного их воздействия па вторичные реакции. Суммарный результат будет аналогичен результатам других вторичных реакций, т. е. выход кокса и легких газов увеличивается и выход бензина снижается, [c.158]


    При неглубоком крекинге, в условиях, когда можно пренебречь вторичными реакциями полимеризации, ароматизации и др., а также влиянием продуктов крекинга на его течение, радикально-цепной процесс более прост и включает реакции зарождения радикалов, взаимодействия их с молекулами алканов и распада сложных радикалов — реакция развития цепей, составляющих цепной цикл, и, наконец, реакции обрыва цепей путем рекомбинации радикалов или захвата их стенками. Совокупность выще перечисленных реакций составляет основу первичного процесса термического радикально-цепного распада алканов. [c.5]

    Весьма существенно влияние давления на состав продуктов крекинга. Это объясняется в основном тем, что с увеличением давления возрастает скорость вторичных реакций продуктов распада (полимеризации, алкилирования, гидрирования). [c.41]

    С повышением температуры увеличивается доля процессов непосредственной молекулярной деструкции в крекинге и уменьщается эффект самоторможения и торможения. Это находится в согласии с предсказанием цепной теории, требующей уменьшения роли цепных реакций с повышением температуры (длина цепи сильно уменьшается с увеличением температуры), и экспериментальными данными о влиянии температуры на действие ингибиторов [68]. Уменьшение эффектов торможения и самоторможения с увеличением температуры сопряжено не с тем, что резко уменьшается адсорбция ингибиторов на стенках [121], но в первую очередь с тем, что сильно замедляются реакции развития цепей, а также реакция обрыва цепей на ингибиторах вследствие уменьшения стерических факторов этих реакций с повышением температуры (см. главу IV). Вторичные реакции, с которыми связано образование конденсированных продуктов и кокса, протекают и при высоких температурах (900—1000°) с участием радикалов. Однако при еще более высокой температуре идут уже реакции распада с образованием водорода, сажи и ацетилена, ускоряемые кристаллическими зародышами углерода [121]. Хотя высокие температуры сильно способствуют диссоциации на радикалы, при высоких концентрациях радикалов резко усиливаются реакции рекомбинации и диспропорционирования радикалов, в результате чего снижается цепной эффект. [c.59]

    Влияние ароматических углеводородов на крекинг насыщенных обусловлено в первую очередь их большей адсорбционной и коксообразующей способностью. Преимущественная адсорбция ароматических углеводородов на поверхности катализатора приводит к снижению концентрации насыщенных- углеводородов, что соответственно уменьшает скорость их крекинга. Участие ароматических углеводородов во вторичных реакциях проявляется обычно в более интенсивном коксообразовании, что понижает активность катализатора и приводит к меньшей конверсии насыщенных углеводородов. [c.98]


    Особенностью каталитического крекинга является то, что выход продуктов определяется в первую очередь конверсией сырья независимо от массовой скорости подачи сырья и кратности циркуляции катализатора, при которых она была достигнута [22, 31, 38]. В области небольшого вклада вторичных реакций выход продуктов прн постоянной конверсии сырья практически не зависит и от температуры крекинга [31]. Таким образом, для данного катализатора и сырья имеются вполне определенные соотношения выхода продуктов независимо от условий процесса (рис. 4.33). Это позволяет изучить влияние различных факторов на результаты крекинга при равной конверсии сырья. [c.135]

    Так как в условиях крекинга в паровой фазе крекинг-газы почти не подвергаются вторичным реакциям, то количество их, а такн<е содерн ание в них олефинов оказываются большими. На рис. 1 показано влияние давления на образование газов при крекинге газойля. [c.19]

    Продолжительность пребывания углеводородов в зоне крекинга влияет также и на протекание вторичных реакций. На практике во всех случаях избегают продолжительного времени реакции, так как при этом может быть достигнуто состояние истинного термодинамического равновесия, сопровождающегося разложением первичных и вторичных продуктов реакции на углерод (нефтяной кокс) и водород. На этом основании степень превращения за один проход при всех процессах крекинга или пиролиза стараются ограничить 50—70% (с исключением из этого правила читатель встретится позже, при описании пиролиза этана). Температура и продолжительность реакции являются зависимыми друг от друга факторами их общее влияние можно выразить в виде функции от их частных влияний [4]. [c.108]

    Состав углеводородных газов крекинга в основном зависит от режима процесса — температуры, времени, давления. Что же касается качества сырья, оно может оказать значительное влияние только в некоторых специфических случаях. Например, пиролиз этана дает газ, весьма богатый этиленом, т. е. в основном протекает дегидрирование этана присутствующие более тяжелые газообразные углеводороды являются уже продуктом вторичных реакций, поэтому выход пропилена и бутиленов при пиролизе этана незначителен. [c.72]

    В случае сложного многостадийного процесса каталитического крекинга нефтяного сырья по причине того, что энергии активации отдельных первичных и вторичных реакций крекинга различаются весьма существенно, идентичной компенсации антибатного влияния X и Т на выход и качество продуктов не может быть достигнуто, за исключением глубины конверсии сырья. [c.473]

    Влияние давления на вторичные реакции крекинга [c.122]

    До сих пор исследование вторичных реакций при помощи крекинга проводилось с углеводородами малого молекулярного веса, и эти данные экстраполировались на углеводороды с молекулярным весом, типичным для тяжелых масел. Для приближения к практическим условиям и выяснения влияния удлинения углеродной цепочки на характер крекинга на тех же катализаторах были поставлены опыты с нормальным цетаном. Их результаты приведены в табл. 1. Для сопоставления приведена сходная табл. 2 для нормального октана. Сопоставление данных этих двух таблиц показывает большое сходство в поведении двух углеводородов, отличающихся вдвое по числу углеродных атомов в молекуле. Поскольку н. цетан кипит при 287,5°, он может считаться типичным i представителем парафиновых компонентов нефти, подвергающихся крекингу. [c.156]

    Анализ газов пиролиза пропана и н-бутаиа в целях установления влияния температуры прн постоянном времени нагрева на протекание реакций крекинга й дегидрирования выполнен П. К. Фролихом с сотрудниками [20]. На рис. 21 показан состав продуктов нпролиза пропана, а именно про-пена, водорода и этилена (метан не обнаружен), в зависимости от температуры. Можно видеть, что при 880° в газе содержится наибольшее количество олефипов. Максимальное содержание пропепа в газе наблюдается нри температуре реакции 810°. До этой температуры содержание водорода в газе эквивалентно содернчанию нропена. Отсюда следует, что здесь происходит чистая реакция дегидрирования. Выше 810° содержание пропепа падает, в то время как содержание водорода сильно возрастает, показывая этим, что пропеп претерпевает вторичную реакцию, сопровождающуюся освобождением водорода. Максимальная концентрация этилена достигается при 890°, когда содержание его составляет около 30%. [c.51]

    Пиролиз осуществляется при низком давлении и температуре, значительно превосходящей температуру крекинга, а именно, при 700° и выше. При такой температуре термические реакции идут с большой скоростью, за короткое время достигается значительная глубина превращения сырья и образуется большое количество продуктов вторичных реакций. Если во время крекинга при низком давлении преимущественно наблюдается распад тяжелых углеводородных молекул, а влияние реакций синтеза относительно невелико, то при пиролизе реакции синтеза приобретают столь важное значение, что ими в основном и определяется состав конечных продуктов.. [c.231]


    Как указывалось выше, вторичные реакции алкенов в значительной степени объясняют существенные различия каталитического крекинга по сравнению с термическим крекингом, а следовательно, и преимущества первого. Помимо совершенно очевидных преимуществ каталитического крекинга в отношении выходов и свойств продуктов, ряд практических преимуществ может быть достигнут в результате вторичных реакций алкенов, протекающих при каталитическом крекинге. Например, поскольку алкены образуются из углеводородов любых типов, качество продукта [56], а в меньшей степени и относительные выходы продуктов [24] при каталитическом крекинге значительно меньше зависят от состава сырья, чем при термическом крекинге. Кроме того, в литературе [68] отмечалось, что различные углеводороды, подвергаемые крекингу в виде смесей, не оказывают взаимного влияния с точки зрения протекающих первичных реакций или оказывают его в весьма ограниченной степени. Однако при исследовании вторичных реакций наблюдаются взаимодействия двух типов. Одно из них — отчетливо наблюдаемое алкилирование бициклических ароматических углеводородов алкенами — было рассмотрено выше. Второе — из смесей, содержащих цикланы, которые являются важнейшим источником водорода для реакций передачи водорода, получаются продукты, характеризующиеся более высокой степенью насыщения [27, 68]. [c.151]

    Влияние параметров процесса на общие результаты каталитического крекинга детально изучалось рядом авторов [48, 56]. Поэтому здесь можно ограничиться лишь рассмотрением отдельных параметров и их влияния на протекание вторичных реакций. Во-первых, необходимо отметить, что из перечисленных выше параметров лишь первые пять можно считать регулируемыми из них только температура, давление и молярная доля углеводородов оказывают существенное влияние на термодинамику протекающих реакций. Хотя состояние катализатора и состав сырья, несомненно, являются важными независимыми параметрами процесса, в условиях промышленной установки возможности их регулирования значительно меньше, чем возможности изменения условий процесса. При обычно применяемых степенях превращении (50—65%) общее влияние параметров процесса можно характеризовать следующим образом. [c.152]

    Первичные реакции, протекающие при каталитическом крекинге, ие сопровождаются сколько-нибудь значительной потерей водорода, так как они ведут к образованию ненасыщенных углеводородов — Сд, С4 и более тяжелых. Вторичные реакции вызывают значительно большее снижение выхода целевых продуктов и, следовательно, потерю водорода. Это показано при изучении влияния степени превращения на эффективность по водороду при крекинге одного и того же сырья. С возрастанием степени превращения с 50 до 70% эффективность по водороду снижается более чем с 90 до менее 85% (рис. 10). Одной из важнейших причин этого является сравнительно легкое превращение олефинов, выкипающих в пределах выкипания бензина, в газ и кокс [131. [c.43]

    Первичная смола — один из наиболее ценных продуктов полукоксования. Это темно-бурая жидкость, содержащая, главным образом, соединения жирного (в том числе и олефины) и нафтенового рядов, высшие фенолы и др. Смолу перерабатывают для получения бензина, керосина, смазочных масел, парафина и других продуктов. Она разделяется перегонкой на несколько фракций, представляющих собой смесь различных углеводородов. Для увеличения выхода легких фракций оставшийся тяжелый остаток подвергают крекингу или гидрогенизации для получения искусственного жидкого топлива. Фенолы, содержащиеся в подсмольной воде, могут быть использованы для получения пластмасс. Большое влияние на состав и количество получаемых продуктов оказывают вторичные реакции разложения, протекающие по выходе газа из зоны собственно полукоксования. [c.113]

    Качество продуктов каталитического крекинга. Существенно влияние переменных параметров процесса каталитического крекинга на качество получаемых продуктов. Жесткие условия крекинга (низкая объемная скорость, высокие значения температуры, кратности, циркуляции и индекса активности катализатора) увеличивают скорость реакций перераспределения водорода и вторичных реакций превращения первичных продуктов распада. Поэтому качество бензинов, полученных при жестких режимах, несколько выше. Так, октановое число бензина (моторный метод), полученного в результате крекинга тяжелого газойля при 450° С и объемной скорости 1,5 было равно 77,6, а индукционный период окисления составил 280 мин. При снижении объемной скорости до 1 ч октановое число повысилось до 78,9, а индукционный период — до 400 мин. Содержание непредельных углеводородов в газе крекинга увеличивается, одновременно увеличивается количество изобутана. С ужесточением режима усиливается ароматизация дизельных фракций. В мягких условиях крекинга цетановые числа легких газойлей довольно высоки 38—45, в жестких условиях они падают до 25—35. [c.245]

    Термические процессы. В эту группу входят процессы, в основе которых способность органических соединений нефти под влиянием высоких температур распадаться, химически видоизменяться, вступать в различные вторичные реакции между собой. В нефтеперерабатывающей промышленности применяются следующие термические процессы термический крекинг, коксование, пиролиз. [c.153]

    Это влияние давления на реакции крекинга, проявляющееся в большей или меньшей степени на избирательности расщепления, сначала кажется чрезвычайно странным. Давление оказывает решающее влияние только па вторичные реакции, при которых вследствие полимеризации исчезают [c.226]

    Так как указанное различие в анергиях меиее выражено для свободно-радикальЕШх реакций, то можно сделать вывод, что обычно при каталитическом крекинге влияние структуры молекулы на скорость и характер начального разложения больше, чем при термическом. Однако для более глубокого рассмотрения обоих видов крекинга следует принимать во внимание значительные вторичные реакции олефинов в ионных системах, что будет рассмотрено ния е. При каталитическом крекинге вследствие многочисленных перегруппировок в образовавшихся первоначально олефинах, конечный продукт является результатом наложения равновесной смеси вторичных продуктов реакций олефинов на первичные продукты крекинга. В силу этого конечная смесь углеводородов до известной степени не зависит от структуры исходной молекулы. Таким образом, присутствие большого количества олефинов, получаемых, как было сказано выше, при крекинге любого из основных классов углеводородов, может являться и действительно является причиной таких реакций, которые затемняют, по крайней мере частично, влияние структуры на начальные стадии разложения. Вторичные реакции олефинов менее выражены в свободнорадикальных системах и поэтому наблюдается кажущийся парадокс, — конечные продукты каталитического крекинга, особенно полученные при крекинге нефтяных фракций, на первый взгляд, меньше зависят от характера структур в исходном веществе, чем при термическом крекинге. По аналогии с механизмом присоединения протона к олефинам может произойти соединение иона карбония с олефином, что приведет к образованию нового большего иона карбония  [c.120]

    На рис. 52 представлены опытные данные о влиянии кратности циркуляции катализатора (крупногранулированного) на глубину превраш,ения при крекинге . Как видно из графика, увеличение кратности циркуляции с 3 1 до 15 1 повысило глубину превращения с 73,1 % до 89,5, при этом наблюдался непрерывный рост выходов кокса и газа кривая выходов бензина и дизельного топлива проходит через максимум вследствие того, что повышенная активность катализатора вызывает вторичные реакции разложения. Естественно, что с увеличением кратности циркуляции катализатора содержание кокса на нем уменьшается, хотя абсолютное его количество возрастает. [c.167]

    Если не учитывать влияние термических процессов, то соотношение выходов бензина и газа или кокса с увеличением поверхности катализатора в реакторе прогрессивно уменьшается, так как все больше возрастает доля поверхности, работающая на крекинг-бензине. Следова- д тельно, чем меньше поверхность навески катализатора в реакторе, тем более он селек- тивен. Это хорошо видно на рис. 4, где приведены кривые изменения отношений /Г и I Б К, построенные по уравнени- ям (6). Изменение соотношения выходов продуктов довольно большое, что свидетельству- О ет о значительной доле вторичных реакций в общей сумме каталитических превращений. Согласно уравнениям (5) или (6), при поверхности катализатора в реакторе 30 ООО [c.103]

    Пирс и Ньюсом [ЗбЬ] нашли, что при крекинге гексана при температурах 430—520° С и при давлениях 985—1055 кг см получаются крекинг-газы, содержащие только незначительное количество олефинов. Содержание непредельных в жидких продуктах разложения при этих условиях было очень небольшим. Следует отметить, что высокое давление благоприятствует только вторичным реакциям полимеризации и конденсации. Высокая температура и продолжительное время крекинга оказывают такое же влияние на вторичные реакции. Уатерман и Перкин [54] показали, что бромные числа крекинг-бензинов и керосинов, полученных в процессе с высоким давлением, резко уменьшаются с увеличением времени крекинга при 450° С. [c.124]

    В условиях процесса Удри возможна значительная дегидрогенизация нафтенов, что подтверждается высоким содержанием водорода в газах крекинга и более высоким содержанием ароматики в бензинах по сравнению с обыкновенным процессом крекинга при умеренных, температурах (глава 5). В сравнении с термическим крекингом условия каталитического процесса Удрк сравнительно мягкие, это проявляется в малом газообразовании и в большом выходе жидких продуктов. Катализатор несомненно имеет очень сильное влияние на вторичные реакции, получающиеся бензины сравнительно стабильны и богаты парафинами с разветвленным строением. Каталитическая конденсация полициклических соединений дает кокс и газойли вместо крекинг-остатков, как это имеет место при термическом процессе крекинга. [c.159]

    Первичный крекинг-процесс, протекающий на небольшую глубину (на несколько процентов в таких условиях, при которых можно пренебречь вторичными реакциями распада олефинов, их полимеризацией, ароматизацией и конденсацией, а также влиянием продуктов крекинга на его скорость), представляет собой радикально-цепной процесс, который включает реакции за-рождения радикалов, реакции взаимодействия их с молекулами алканов и распада сложных радикалов (развитие цепей) и, наконец, реакции обрыва цепей при рекомбинации радикалов или при захвате их стенками реактора. Совокупность перечисленных реакций составляет основу первичного процесса термического радикально-цепного крекинга. Уже этого вполне достаточно для того, чтобы из единой радикально-цепной схемы процесса количественно предсказать состав продуктов неглубокого крекинга индивидуальных алканов и их смесей, наблюдаемый на опыте, как это было показано в работах Фроста и Динцеса [3]. Процессу первичного крекинга алканов соответствует кинетика реакций с порядком, равным единице или полуторам, в зависимости от того, происходит обрыв цепей путем рекомбинации различных или одинаковых радикалов, как это было показано еще Ф. Райсом [c.342]

    Ввиду того, что коксообразование зависит главным образом от полимеризации и от вторичных реакций крекинга, в результате которых образуются высококипящие масла с значительным содержанием асфальтоподобных веществ (дающих начало коксу), следует ожидать, что давление оказывает известное влияние и на коксообразование. Как уже было сказано выше, коксообразование,. так же как и реакции полил1еризации, возрастает с увеличением давления сперва быстро, затем все медленнее, пока наконец, переходя через максимум, оно не начинает падать. Это объясняется тем, что скорость полимеризации замедляется по мере того, как высшие олефины в результате увеличения давления переходят, растворяясь, в жидкую фазу и тем самым разбавляются. Froli h указывает на то, что реакции п-олимеризации и вторичного крекинга, предвестники коксообразования, протекают значительно медленнее при обычных температурах крекинга при давлении в 42—70 ат, по сравнению с давлением в 7—14 ат. [c.120]

    Опыты по крекингу м-гексана, цетана и н-гептакозана, проводившиеся одновременно с крекингом углеводородных концентратов, обнаружили, что выход алкенов увеличивается с повышением молекулярного веса исходного алкана. Эти наблюдения согласуются с опубликованными ранее [9] данными относительно влияния пределов кипения сырья. Они не противоречат также представлению об уменьшении интенсивности вторичных реакций алкенов при менее жестких условиях крекинга, требуемых для переработки легко крекируем ого сырья. [c.142]

    Общее влияние ароматизации алкенов на выход и качество получаемых продуктов невозможно установить с достаточной достоверностью Как это наблюдается для большинстве вторичных реакций, протекающих при каталитическом крекинге, ароматизация оказывает как отрицательное, так и положительное влияние. На первый взгляд эта реакция представляется желательной, так как образование моно-циклических ароматических углеводородов должно повышать октановое число бензина, а выделяющийся свободный водород может насыщать алкены ра ветвленного строения, а возможно, и обрывать цепные реакции, ведуище к образованию кокса. Однако логично предположить, что условия, благоприятствующие образованию ароматических углеводородов и алкенов, будут благоприятствовать и протеканию дальней- [c.148]

    Из приведенных выше кратких данных о влиянии основных параметров видно, что повышение температуры и давления благоприятствует протеканию некоторых вторичных реакций и подавляет другие. В общем случае повышение. цавления сверх уровня, необходимого для достижения приемлемой степени превращения, благоприятствуеа протеканию реакций насыщения, ведущих к повышенному образованию алканов. Таким образом, хотя повышение давления может давать некоторое незначительное увеличение выхода бензина, октановое число бензина при. этом снижается. Влияние повышения температуры проявляется гораздо менее отчетливо. Хотя с повышением температуры октановое число бензина повышается, а выход кокса снижается, выход бензина также оказывается несколько ниже. Кроме того, с повышением температуры скорость крекинга возрастает быстрее, чем скорости реакций изомеризации и передачи водорода. При одинаковой степени превращения это приводит к меньшему образованию алканов разветвленного строения. Усиление крекинга ведет к повышенному выходу легких газов, а остающиеся газойлевые фракции характеризуются меньшим содержанием водорода, т. е. они являются более низкокачественными к как котельное топливо, и как сырье для каталитического крекинга. Таким образом, как это всегда наблюдается для большинства параметров, выбор оптимальной температуры крекинга обычно требует отыскания некоторого компромиссного решения с учетом многочисленных эксплуатационных и экономических показателей. [c.153]

    Общий характер взаимозависимости между жесткостьн). степенью превращения, молекулярным весом сырья (характеризующим его крекируемость) и выходами бензина и кокса показан на рис, i и 2 [65], На рис, i показан зависимость выхода депентанизи-рованного бензина от степени превращения цифры на линиях указывают средний молекулярный вес сырья. На рис, 2 представлены аналогичные кривые для выхода кокса. На обоих графиках пунктирными линиями показаны результаты крекинга при постоянной жесткости (низкой или высокой). Общий характер этих кривых сохраняется и для других видов сырья, хотя при крекинге изоалкан-циклановых фракций влияние рассматриваемых факторов проявляется сравнительно больше и поэтому они дают более наглядную иллюстрацию важного значения вторичных реакций и особенно нежелательных реакций, ведущих к образованию кокса. [c.156]

    Продукты распада нафтенов также подвергаются вторичным реакциям изомеризации и дегидрогенизации с образованием ароматических углеводородов. В результате при каталитическом крекинге происходят передвижение кратной связи, изменение строения углеродного скелета, насыщение двойных связей, циклизация и алкилирование. Наибольшее значение в процессе крекинга имеет температура, определяющая степень я скорость каталитического равложевия углеводородов, тем более, что крекирующее действие катализаторов проявляется в сравнительно узком интервале температур. Повышение ее углубляет процесс разложения углеводородов. Так как процесс крекинга протекает в адсорбционном слое на поверхности катализатора, а не в объеме, то влияние давления незначительно. Повышение давления способствует полимеризации, перераспределению водорода и коксообразованию. Но в промышленности давление изменяют незначительно. На результаты крекинга влияет его продолжительность. Объемная скорость подачи жидкого сырья при каталитическом крекинге, как правило, изменяется в пределах от 0,1 до 10 дм ч-м катализатора (наиболее употребительны объемные скорости 0,5—2,0 дм ч-м катализатора при 0°С) нем меньше объемная скорость, тем больше глубина крекинга при прочих равных условиях. [c.127]

    Наиболее важными из этих вторичных реакций являются реакции, характерные для двойной связи, имеющейся или в исходном углеводороде или образующейся в результате крекинга. При исследовании вторичных реакций олефинов при каталитическом крекинге изучались качественная и количественная изомеризация олефинов, насыщение олефинов посредством перераспределения водорода, эффект насыщения при различных температурах, объемных скоростях и разбавителях, влияние структуры олефинов на перераспределение водорода, влияние декалина и тетралина как доноров водорода, сравнение перераспределения водорода и каталитического гидрирования, получение полимеров и ароматических углеводородов из олефинов. [c.101]


Смотреть страницы где упоминается термин Вторичные реакции влияние при крекинге: [c.132]    [c.151]    [c.445]    [c.275]    [c.68]    [c.269]    [c.431]    [c.59]    [c.62]    [c.275]    [c.671]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.111 , c.117 ]




ПОИСК





Смотрите так же термины и статьи:

Вторичные реакции, влияние их на константу скорости реакции крекинга

Вторичные реакции, влияние их на константу скорости реакции крекинга вольтовой дуге

Реакции вторичные

Реакции крекинга

Скорость крекинга и давление (1 9). Влияние давления на вторичные реакции крекинга



© 2025 chem21.info Реклама на сайте