Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кальций превращения

    В обоих этих процессах ацетон образуется, по-видимому, в результате декарбоксилирования уксусной кислоты. Превращение уксусной кислоты в ацетон при нагревании с солями металлов, например с ацетатом кальция, хорошо известно. Прямое парофазное декарбоксилирование уксусной кислоты по реакции (6) в Германии проводили, пропуская пары уксусной кислоты при 400—450° и атмосферном давлении над окисью церия на пемзе [7]. Выход составлял 95%. [c.317]


    Инверсия (обраш,ения фаз)—это превращение эмульсии одного типа в другой путем добавления к ней большого количества эмульгатора другого рода при энергичном перемешивании. При этом дисперсная фаза становится дисперсионной средой, а дисперсионная среда — дисперсной фазой. Например, инверсию прямой эмульсии, стабилизированной олеатом натрия (гидрофильным эмульгатором), можно вызвать добавлением олеата кальция (гидрофобного эмульгатора). Такой же эффект наблюдается при введении в эмульсию при энергичном перемешивании раствора хлорида кальция, который, взаимодействуя с олеатом натрия, образует олеат кальция. [c.197]

    В технике превращение крахмала в глюкозу (процесс оса хари е а и и я) осуществляется путем кипячения его в течение нескольких часов с разбавленной серной кислотой (каталитическое влияние серной кислоты на осахаривание крахмала было обнаружено в 1811 г. русским ученым К. С. Кирхгофом). Чтобы из полученного раствора удалить серную кислоту, к нему прибавляют мел, образующий с серной кислотой нерастворимый сульфат кальция. Последний отфильтровывают и раствор упаривают. Получается густая сладкая масса, так называемая крахмальная патока, содержащая, кроме глюкозы, значительное количество других продуктов гидролиза крахмала. Патока применяется для приготовления кондитерских изделий и для различных технических целей. [c.494]

    Ацетилбензиловый эфир уксусной кислоты. В смесь из 485 г 4-этилбензилового эфира уксусной кислоты, 5 г окиси хрома и 20 г углекислого кальция пропускают при 130—140° в течение 28 час. сильный ток воздуха через распылитель из пористого стекла. После охлаждения реакционной смеси отфильтровывают катализатор, прибавляют к фильтрату 10 г уксуснокислого натрия и 100 мл уксусного ангидрида и смесь кипятят в течение 2 час. с обратным холодильником. Затем разбавляют водой, экстрагируют бензолом и бензольный экстракт перегоняют. В результате перегонки получают 287 г 4-этилбензилового эфира уксусной кислоты (возврат 59%) ст. кип. 119—129° 2 мм) п 1,5011 и 118 г 4-аце-тилбензилового эфира уксусной кислоты с т. кип. 155—185° (12 мм), п g-1,5225 (степень превращения 23% выход 55% от теорет.). После тщательной очистки получают 4-ацетилбензиловый эфир уксусной кислоты с т. кип. 161 —163° (И л 1,5225 28 1,126 [88]. [c.63]


    Основные сульфонаты обычно получают взаимодействием средних сульфонатов с оксидом или гидроксидом, металла при нагревании. Известен метод, заключающ-ийся в нейтрализации продукта сульфирования водным раствором аммиака или едкого натра (едкого кали) и дальнейшем проведении обменной реакции с водным раствором хлорида кальция или гидроксида щелочноземельного металла при различных температурах [пат. США 3772198 а. с. СССР 526617]. Процесс можно интенсифицировать за счет увеличения скорости реакции и исключения высокотемпературной стабилизации продукта. Полученный таким путем сульфонат может быть превращен в высокощелочной сульфонат с различной степенью щелочности. Обменную реакцию можно проводить в присутствии промоторов — карбоновых кислот С —С4, алкилфенола или алифатического спирта [а. с. СССР 502930, 639873] с применением углеводородных растворителей, низкомолекулярных спиртов С1—С4 или их смесей. [c.78]

    Топохимические реакции. К числу топохимических реакций относятся процессы, которые сосредоточиваются" на границах фаз твердых тел и сопровождаются перестройкой кристаллической решетки вещества. Таковы реакции разложения перманганатов при нагревании, диссоциация карбоната кальция на углекислый газ и окись кальция, превращения в кристаллах кристаллогидратов, связанные с потерей воды, фотолиз галогенидов серебра, взрывная реакция разложения азидов и многие другие. Имеются основания считать, что в большинстве случаев начальный период таких реакций характеризуется возникновением зародышей новой фазы. Эти зародыши, поверхность которых неуклонно растет, могут оказывать каталитическое действие, и реакция в целом приобретает автокаталитический характер. [c.395]

    Вычислить массу карбида кальция, необходимого для получения 0,1 м сухого ацетилена (при н. у.), если коэффициент превращения равен 0,91. [c.55]

    Продукты реакции разбавляют водой и отгоняют из них ацетон и непрореагировавший изопропиловый спирт. Перекись водорода, получающаяся в виде 6—10%-ного водного раствора, загрязнена органическими примесями и требует очистки, например, путем превращения ее в перекись кальция [16]. [c.151]

    Окись кремния и сульфаты металлов, содержащиеся в катализаторе, снижают его активность. Катализаторы конверсии отравляются под действием сернистых соединений, в частности сероводорода [223, 224], в связи с превращением никеля в соответствующие неактивные соединения — сульфаты и сульфиды никеля. На свойства катализаторов существенно влияют качество применяемого сырья и условия их приготовления. Сырьем для производства катализаторов являются глинозем, соли алюминия (сульфат), никеля (сульфат, нитрат), магния, кальция и др. [c.88]

    Технология производства портландцемента основана на превращении естественно встречающейся смеси карбоната кальция, алюминия и кремния в алюминат кальция или алюмосиликат кальция. Этот процесс глубоко эндотермичен (требуемый удельный расход тепла — около 5,86 млн. кДж/т, температура в зоне кальцинации 900°С, в реакционной зоне— 1500°С). Время собственно процесса составляет около 48 ч при полностью высушенном сырье. Некоторое время затрачивается на предварительную осушку сырых материалов. [c.293]

    Для удаления из отработанных масел радиоактивных примесей предложена обработка кристаллическим гипохлоритом кальция или натрия (45 л на 190 л масла) или их смеси с сульфатом магния (0,1 кг соли на 190 л масла). Химические добавки перемешивают с маслом в течение 10 мин. Радиоактивные примеси образуют с реагентами соответствующие соли. Затем смесь направляют в нагреватель (150°С) и второй смеситель (190°С), куда подают бикарбонат натрия для превращения примесей в твердые соли, удаляемые затем фильтрованием [300]. [c.368]

    При необходимости определения микропримеси паров воды в каком-либо газе, по выходе из колонки вещества поступают в реактор с литий-алюминий-гидридом, реагирующим с водой с образованием водорода, и на выходе из реактора проходят детектор (катарометр), в котором пик водорода соответствует содержанию воды. При необходимости применения пламенно-ионизационного детектора реактор заполняется карбидом кальция, реагируя с которым, вода превращается в ацетилен. Последний определяется по хроматограмме ПИД. В этом случае применяется схема 4. Возможно превращение воды в реакторе до колонки по схеме 3. [c.127]

    Превращение воды с целью облегчения хроматографирования Примеси воды в органических соединениях Ацетилен или водород Карбид кальция или литий, алюминий гидрид 20 Определение содержания воды Любой, кроме водорода [c.179]

    Полное превращение щавелевокислого кальция в окись кальция достигается только при очень высокой температуре. [c.162]

    Прокаливать осадок целесообразно в электрической муфельной печи, так как в этих условиях легче удаляется углекислый газ, поэтому равновесие реакции практически полностью сдвигается вправо и полное превращение осадка в окись кальция происходит быстрее, даже при менее высокой температуре. Прокаливание осадка на пламени горелки ведется, по существу, в атмосфере углекислого газа поэтому для получения чистой окиси кальция осадок приходится прокаливать при высокой температуре. Для этого следует прокаливать под конец на горелке с дутьем. [c.164]


    Особое наше внимание должен привлечь процесс доломитизации, который состоит в замещении в известняках кальция магнием и в превращении известняка СаСОд в доломит [( aMg) Oз I, или доломитизированный известняк, причем объем породы сокращается на 12%. Если подобное замещение происходит от отложения породы до ее затвердевания, то нет никакого основания считать, что пористость доломитизированного известняка будет существенно отличаться от пористости обыкновенного известняка. Но если процесс доломитизации совершается по тем или иным причинам после затвердевания породы, то вследствие сокращения объема породы возникают трещины и разрывы, которые, являясь хорошим проводником циркулирующей воды, могут быть расширены до более или менее значительных размеров. [c.152]

    Однако по некоторым данным, ортосиликат кальция обладает еще более сложным полиморфизмом. Так, по Н. А. Торопову и Б. В. Волконскому, двухкальциевый силикат имеет по крайней мере 5 форм со следующей схемой превращений  [c.106]

    Этот процесс обратим. Условия равновесия определяются соотношением между растворимостями гидроокиси и карбоната кальция. Степень каустификации возрастает с уменьшением концентрации оды в исходном растворе (рис. 68) и с понижением температуры. Однако на практике процесс осуществляют нри 80—100° С с целью увеличения скорости взаимодействия реагентов и получения крупнокристаллического осадка карбоната кальция. Обычно применяют 10—15% раствор Naa Og. При этом достигают превращения Naa Og в NaOH па 90—95% и получают щелок, содержащий 100— [c.580]

    Свойства сульфокислот. Сульфокислоты очень хорошо растворимы в воде исключение составляют моносульфокислоты нафтиламинов, труднорастворимые вследствие образования внутренних солей. Все сульфокислоты, не содержащие аминогруппы, являются сильными кислотами по силе их можно сравнивать с серной или с соляной кислотами. При кристаллизации их из растзоров в минеральных кислотах, в которых они труднее растворимы, чем в воде, образуются гидраты последние обычно гигроскопичны. Если при сульфировании образуется только один изомер и он не кристаллизуется из раствора, то его выделяют путем нейтрализации реакционной массы карбонатом кальция или известью с последующим от-фильтровыванием сульфата кальция, превращением кальциевой соли сульфокислоты в натриевую путем обработки содой, от-фильтровыванием выпавшего карбоната кальция и упариванием фильтрата. Обычно удается выделить натриевую соль моносульфокислоты путем прибавления избытка хлористого натрия к частично нейтрализованной реакционной массе, что сдвигает равновесие вправо  [c.62]

    Превращения энергии при химических реакциях. Химические реакции протекают с выделением или с поглощением энергии. Обычно эта энергия выделяется или поглощается в виде теплоты. Так, горение, соединение металлов с серой или с хлором, нейтрализация кислот щелочами сопровождаются выделением значительных количеств теплоты. Наоборот, такие реакции как разложение карбоната кальция, образование оксида азота(II) из азота и кислорода требуют для своего протекаиия ненрерывного притока теплоты извне и тотчас же приостанавливаются, если нагревание прекращается. Ясно, что этп реакции протекают с поглощением теплоты. [c.166]

    Для процесса дегидрогенизации бутиленов в бутадиен разработано несколько катализаторов. Фирма Дау кемикел компани разработала катализатор из фосфата кальция и никеля. По со-обгцению фирмы в промышленных условиях при глубине превращения 35% выход бутадиена на превращенные бутилены 90%. Фирма Филлипс петролеум раньше применяла промотированный бокситовый катализатор, пропитанный перекисью бария. На этом катализаторе выход бутадиена из бутиленов в лабораторных условиях составлял 85% при 20%-ной их конверсии и 72% при 40%-ной конверсии. В заводских условиях получен более низкий выход, равный 70—80% при 20—25%-ной конверсии. [c.71]

    К гетерогенным реакциям, проводимым в системах с реагирующими веществами, находящимися в двух (газ — жидкость, жидкость — твердое вещество, газ — твердое вещество) или трех (газ — жидкость — твердое вещество) фазах, относятся гидрогенизация угля, угольных паст, нефтяных остатков, получение ацетилена из карбида кальция [СаС2(тв)Н20(ж)— —>-СаО(тв)+С2Н2(г)] и многие другие превращения. [c.87]

    Для расчета абсолютных энтропий однотипных веществ в кристаллическом состоянии может быть применено уравнение (111,9). Рис. 111,9 показывает , что между значениями St метатитанатов магния, кальция, стронция и бария действительно существует линейная связь (кроме области полиморфных превращений ВаТЮз). Точки, отвечающие FeTiOs (на рисунке не показаны), располагаются на прямой в области между прямыми, соответствующими aTiOs и BaTiOa, которая имеет несколько другой угол наклона. [c.127]

    Адипиновую и пимелиновую кислоты мо но превратить также в циклоиентанон и циклогексанои сухой перегонкой их кальциевых солей значительно худший выход получается при аналогичном превращении пробковокислого кальция в циклогептанон и азелаиновокислого кальция в циклооктаион. Девятичленные циклические кетоны этим путем совсем не образуются или получаются лишь в ничтожном количестве (см. также стр. 921 и сл.). [c.338]

    Для получения высокощелочных присадок к смазочным маслам взвесь оксида или гидроксида кальция в растворе метилового спирта перемешивают, а затем обрабатывают угольной кислотой при низком давлении (70 кПа) до полного превращения оксида кальция в карбонат кальция и смешивают с концентрированным раствором октилсалицилата кальция. Полученная таким путем присадка имеет кислотное число 300 мг КОН/г [пат. ПНР 81667]. [c.87]

    Катализатор представляет собой смесь средних фосфатов кальция и кадмия и содержит также некоторое количество кислых фосфатов [мольное отношение (СаО-f- Сё0)/Рз05 составляет 2,8]. В процессе контактирования и регенерации средние фосфаты переходят в пирофосфаты, обладающие меньшей удельной поверхностью и пористостью при больших размерах пор. Выход ацетальдегида при этом возрастает, поскольку с увеличением размера пор снижается вероятность вторичных превращений альдегида. При увеличении доли кислых фосфатов снижается механическая прочность катализатора. [c.235]

    Общая методика алкилирования. Алкилирование галоиданизолов проводилось так же, как и галоидфенолов. Носле прибавления рассчитанных количеств олефинов реакционная смесь перемешивалась в течение 2—4 час. при температуре опыта, оставлялась стоять па 12—14 час. при комнатной температуре, смешивалась с бензолом с целью облегчить дальнейшую обработку, обрабатывалась водой, 5%-ным водным раствором соды, снова водой и в виде бесцветной ипи светло-желтого цвета прозрачной жидкости сушилась хлористым кальцием и перегонялась. При атмосферном давлении отгонялись растворитель и не вступившие в реакцию исходные галоиданизолы и олефины, а продукты алкилирования фракционировались в вакууме. Состав и строение их устанавливались количественным анализом на галоид и превращением в различные производные. [c.228]

    Метиловый эфир 4-ацетилбензойной кислоты. 500 г метилового эфира 4-этилбензойной кислоты смешивают с 5 г окиси хрома и 20 г углекислого кальция и в смесь при 150° в течение 24 час. пропускают воздух через прямую стеклянную трубку при энергичном перемешивании образующуюся воду собирают в ловушке прибора Дина — Старка. По окончании окисления продукты реакции еще теплыми выливают из колбы и разбавляют таким количеством бензола, чтобы во время отфильтровывания катализатора продукт окисления оставался в растворе. В результате перегонки получают 95 г исходного эфира и 290 г метилового эфира 4-ацетилбензойной кислоты с т. кип. 140—145° (4 мм) степень превращения составляет 54% выход — 66% от теорет. Продукт, перекристаллизованный из гексана, плавится при 95,2—95,4° [137]. [c.110]

    Хлорстирол. Через трубку для пиролиза, наполненную безводным сернокислым кальцием и нагретую до 425—475°, пропускают при остаточном давлении 90 в течение 160 мин. 250 г 1-(3-хлорфенил)-1-хлор-этана вместе с тремя объемами (приблизительно) воды, превращенной в пар. После охлаждения трубку промывают 50 мл бензола, соединяют дистиллят и промывную жидкость и три раза экстрагируют бензолом. Соединенные экстракты отмывают от кислоты водным раствером двууглекислого натрия и затем перегоняют в присутствии следов серы и гидрохинона. Получают 183 г 3-хлорстирола выход составляет 92,5% от теорет. [18]. [c.24]

    Эфир 4-ацетилфенола и уксусной кислоты. В317г эфира 4-этилфенола и уксусной кислоты, содержащего смесь окиси хрома, гидрата окиси кобальта и углекислого кальция, взятых в соотношении 1 1 8 соответственно, продувают кислород через алундовый распылитель. Воду, образующуюся в результате реакции, удаляют при помощи ловушки Дина-Старка. Реакционную смесь охлаждают, отфильтровывают катализатор и промывают его бензолом к основному фильтрату присоединяют промывной бензол, прибавляют 100 мл уксусного ангидрида, содержащего 10 г уксуснокислого натрия, и кипятят 2 часа. Смесь тщательно промывают водой и перегоняют. Получают 222 г эфира 4-этилфенола и уксусной кислоты (возврат 70%) с т. кип. 109—124° (13 мм), 1,4961 и 81 г эфира 4-ацетилфенола и уксусной кислоты с т. кип. 157-162° (13 мм) степень превращения 24%, выход составляет 79% [126]. [c.98]

    Смолы и осадки, образующиеся при окислении прямогонных реактивных и дизельных топлив, характеризуются высоким содержанием кислорода 45-50, серы 7-9, азота 0,5-2,0, зольных элементов (металлов) 7-9%. Среди зольных элементов обычно преобладают медь 1-3, цинк - до 1,0, кальций -до 1,0, железо, алюминий, олове и др. до 0,1%. Эти данные подтверждают активное участие в термохимических превращениях в топливах гетероатомных соединений, каталитическое н.ч. " кке металлов (медь, бронза) и химическое взаимодействие продуктов окисления с металлами. Зависимости осадкообразования в реактивных топливах от темперзт) . приведены на рис. 8. Снижение массы осадка при температ1 р2. 130- 90 С связано с повышением давления насыщенных паров (уменьшением доступа кислорода к поверхности топлива) и увеличением растворимости продуктов окисления в топливе. [c.87]

    П. А. Ребиндером и В. Ф. Абросенковой было изучено взаимодействие гидроокиси кальция и кристаллического кремнезема — песка, протекающее без нагревания в водной суспензии. В результате ими были выявлены условия изготовления известково-песча-ных блоков без гидротермальной обработки. Следует заметить, что при этом помимо физико-химических процессов, которые П. А. Ребиндер считал ответственными за твердение подобных смесей, протекают различные реакции конденсации, сопровождающие процесс деструкционно-эпитаксиального превращения. Высокую прочность известково-кремнеземные вяжущие приобретают главным образом благодаря сшиванию частиц кремнезема Са — 0-мостиками  [c.238]

    Двуокись углерода удалялась из сферы реакции и химическое равновесие нарушалось. Для восстановления равновесия реакция самопроизвольно сдвигалась в сторону дальнейшего разложения карбоната кальция. Таким образом, основная причина более быстрого разложения СаСОз в присутствии углерода — это удаление из сферы реакции образующегося СОг. Причем в отличие от предыдущего опыта, где удаление СОг из сферы реакции достигалось пропусканием через систему воздуха, в данном опыте СОг удаляется за счет реакции превращения его в СО. [c.111]


Смотреть страницы где упоминается термин Кальций превращения: [c.62]    [c.83]    [c.180]    [c.181]    [c.86]    [c.575]    [c.225]    [c.245]    [c.204]    [c.61]    [c.117]    [c.363]    [c.200]    [c.368]    [c.125]    [c.59]   
Технология минеральных удобрений (1974) -- [ c.147 ]




ПОИСК





Смотрите так же термины и статьи:

Диаграмма равновесных превращений кристаллогидратов сульфата кальция в азотной кислоте

Кальций, гидроокись кальция, экстракция при превращении бутена

Карбонат кальция превращение

Осуществите превращение сероводорода в сульфат кальция

Осуществите цепочку превращений хлорид кальция - кальций - оксид кальция - гидроксид кальция - карбонат кальция — гидрокарбонат кальция — карбонат кальция - хлорид кальция - гидроксид кальция - хлорная известь

Последовательное превращение соединений кальция

Последовательные превращения соединенна кальция

Превращения окиси кальция и серы в процессе горения назаровского и березовского углей

Фазовые превращения кристаллогидратов сульфата кальция в фосфорнокислых растворах

Фазовые превращения сульфата кальция в фосфорнокислых растворах

Фосфорная схема превращений кристаллогидратов сульфата кальция



© 2025 chem21.info Реклама на сайте