Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Современная схема производства кокса

    Современные схемы производства кокса 89 [c.4]

    В альбом включены технологические схемы процессов для получения дистиллятных моторных топлив, смазочных материалов, твердых углеводородов — парафинов и церезинов, нефтяного кокса и битума, технического углерода (сажи), водорода на основе каталитической конверсии легких углеводородов, некоторых видов нефтехимического сырья (этилен, жидкие парафины), серы и т. д. В альбом не вошли схемы установок нефтехимических производств вследствие многообразия технологических процессов в данной области, их специфики и зачастую комплексности. Рассмотрены только несколько процессов данного профиля, в основном относящихся к подготовке нефтяного сырья. Число процессов и способов проведения их весьма значительно. Авторы стремились собрать технологические схемы типичных и современных процессов число вариантных схем ограничено. [c.5]


    СОВРЕМЕННАЯ СХЕМА ПРОИЗВОДСТВА КОКСА [c.129]

    Таким образом, получаемый бензол имеет низкое содержание н-гептана, что является одним из основных требований к бензолу при производстве капролактама по современным схемам. Однако длительная эксплуатация опытной установки выявила два существенных недостатка процесса — быстрый рост отложений кокса [c.57]

    Водород. В современном промышленном производстве водород используется в больших количествах для синтеза аммиака и метилового спирта, для гидроочистки и гидрокрекинга нефтяных продуктов. В последнее десятилетие его применение возросло в связи с развитием нефтехимии, ракетной техники и энергетики. Темпы его мирового производства увеличились с 1970 по 1977 г. от 18 до 30 млн. т/год. Около половины получаемого водорода используется для синтеза азотных удобрений. Если этот водород применять для синтеза БВБ, то можно полностью покрыть имеющийся в мире белковый дефицит. Сырьем для получения водорода служат вода и любое топливо (уголь, нефть, природный газ). Мировые запасы органического топлива оцениваются в (10—300) X 10 ккал, из них 1,5-10 ккал каменного угля запасы воды в океанах — в 1,3-10 т. Таким образом, ресурсы водорода на Земле можно считать неисчерпаемыми. Роль того или иного сырьевого ресурса для получения водорода меняется в зависимости от технической разработанности технологий и стоимостной конъюнктуры. На рис. 43 представлена схема [Иоффе, 1960], на которой показаны способы получения На в промышленности из различных видов сырья. До 60-х годов основным способом получения Hj в СССР была газификация твердых топлив (кокса, антрацита и бурых углей). [c.125]

    Наиболее распространенным современным типом печи пиролиза для получения олефинов из газообразных нефтепродуктов, нафты и газойля является трубчатая печь. Это основной агрегат в производстве олефинов. Технологическая схема процесса приведена на рис. 3.5. Печь состоит из двух секций конвекционной, в которой сырье испаряется, смешивается с водяным паром и подогревается до температуры реакции, и радиантной, в которой подводится тепло, необходимое для прохождения реакции. В каждой печи монтируется от двух до восьми змеевиков, а сами печи устанавливаются с учетом возможности их попеременного выключения для удаления образовавшегося кокса, что обеспечивает непрерывную работу всей установки. Конфигурация и размеры змеевиков в радиантной секции (где протекает пиролиз) определяются конструкцией печи и требуемым составом продуктов. Обычно они имеют длину 30—160 м и диаметр 50—120 мм. Температурный профиль змеевиков регулируется с помощью газовых горелок, расположенных у стенок печи. [c.65]


    В учебнике изложены основы технологии производства металлургического кокса, улавливания и переработки химических продуктов коксования углей. Даны сведения об угле как сырье для коксования и современные представления о процессе коксования. Рассмотрены технологические схемы отдельных стадий производства, устройство печей для коксования и основных аппаратов, режим их работы и правила эксплуатации. Освещены вопросы контроля производства и техники безопасности. [c.2]

    В сйорнике цредставлены материалы научно-исследовательскшс работ, выполненных в институте в последние годы в области подготовки сщ)ья коксования, технологии производства и црименения нефтяного кокса. В статьях рассмотрены важные вопросы разработки схем получения коксов различного назначения, изучения термолиза дистиллятных и остаточных цродуктов, методов и программ расчета твхяшческих цроцессов, исследования физико-механических свойств коксов, анализа работы некоторого оборудования установок замедленного коксования. Приведены результаты исследований разных видов сырья коксования во взаимосвязи с качеством получаемого кокса. Работы выполнены с использованием современной инструментальной техники эмиссионной и ИК-спектроскопии, радиоспектроскопии, рентгеноструктурного анализа и т.д. [c.2]

    Институтом Проблем нефтехимпереработки еще в 1994г. проработан вариант организации производства нефтяного кокса на ОАО Комсомольский НПЗ . Процесс замедленного коксования особенно удачно вписывается в схему развития именно этого НПЗ, на нем ожидается доведение объемов переработки нефти до 4,5 млн т в год. Если на этом НПЗ построить установку замедленного коксования мощностью 750 тыс. т по гудрону, то появится возможность выработки 165 тыс. т кокса в год из гудрона с коксуемостью 14,8 %. Содержание в коксе серы до 0,7 %. У нас имеется готовый технологический регламент на проектирование данной УЗК в самом современном оформлении. [c.15]

    Подготовка рудного сырья, процессы окускования являются важнейшей стадией металлургического производства. До 90 % рудного сырья в черной и цветной металлургии подвергается предварительному измельчению и обогащению с последующим окомкованием. На современном этапе отмечаются явно выраженные тенденции к большему развитию этого передела, к увеличению затрат топлива на тепловую обработку и подготовку сырья. Производство стабильного высококачественного сырья для доменного процесса — агломератов и окатышей — позволяют улучшить технико-эшно-мические показатели работы доменных печей, добиться снижения удельных расходов дефицитного кокса и, как следствие, снизить как общие энергозатраты на получение продукции, так и себестоимость чугуна и проката. И в нашей стране, и во всем мире вопросам подготовки сырья и его тепловой обработки уделяется все большее внимание растут мощности агломерационных машин и машин для производства окатышей, совершенствуются тепловые схемы и режимы этих процессов, разрабатываются мероприятия, направленные на более эффективное использование топлива в процессах окускования. В черной металлургии расход топлива на подготовку рудного сырья составлял около 7 % от общего потребления топлива [9.12,9.13]. [c.147]

    В большинстве случаев атмосферную и вакуумную перегонку нефти ведут на одной установке. Такие комбинированные установки называют атмосферно-вакуумными трубчатками (АВТ Остатком при атмосферно-вакуумной перегонке нефти является гудрон, который используют для получения котельных топлив или как сырье для получения высоковязких (остаточных) масел, битума и кокса. АВТ занимают меньшую площадь, расходуют меньше топлива, электроэнергии и пр., чем раздельно АТ и ВП (вакуумная перегонка мазута). поэтому на современных заводах с высоким отбором светлых нефтепродуктов или с большим объемом производства V масел и битума сооружают в основном атмосферно-вакуумные 4,. -трубчатки, причем, как правило, с блоком электрообессоливания. Такие установки называют ЭЛОУ — АВТ. В тех случаях, когда производство масел и бйтумоЁ не предусмотрено или незначительно, а отбор светлых нефтепродуктов не превышает 45%, строят атмосферные трубчатки, сочетая их с ЭЛОУ (ЭЛОУ — АТ), и дополнительно в схему завода включают установку вакуумной перегонки части мазута, получаемого на ЭЛОУ — АТ. [c.95]


Смотреть страницы где упоминается термин Современная схема производства кокса: [c.40]   
Смотреть главы в:

Технология производства кокса -> Современная схема производства кокса




ПОИСК





Смотрите так же термины и статьи:

Кокс Сох

Коксо газ

Схема производства

Схема схемы производства



© 2025 chem21.info Реклама на сайте