Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Репликоны

Рис. 80. Механизм генетической нестабильности, вызываемой мобильными элементами [При попытке мобильного элемента осуществить репликативную транспозицию а пределах того же репликона. где он находитсн, возникают делеции (слева) или инверсии (справа)] Рис. 80. <a href="/info/33086">Механизм генетической нестабильности</a>, вызываемой <a href="/info/1355266">мобильными элементами</a> [При попытке <a href="/info/1355266">мобильного элемента</a> осуществить <a href="/info/33378">репликативную транспозицию</a> а пределах того же репликона. где он находитсн, возникают делеции (слева) или инверсии (справа)]

    Стабильное поддержание любого репликона требует не только согласования его репликации с клеточным делением, но и упорядоченного распределения молекул ДНК по дочерним клеткам. Считается, что правильная сегрегация достигается у бактерий за счет прикрепления ДНК к мембране, причем пространственная организация [c.68]

    Начавшийся процесс репликации хромосомы бактерии продолжается до тех пор, пока не удвоится вся ДНК. В этом смысле бактериальная хромосома представляет собой единицу репликации — репликон. Другие молекулы ДНК, которые могут присутствовать в бактериальных клетках (см. гл. V), также представляют собой отдельные репликоны. [c.60]

    Перемещение по крайней мере некоторых транспозонов и IS-элементов происходит путем их вырезания с места старой локализации с последующим встраивание.ч в какое-нибудь другое место того же или нового репликона. Такой механизм называется консервативным в отличие от полу-консервативной репликативной транспозиции. В принципе консервативная транспозиция может происходить при незначительной модификации уже описанной схемы, показанной на рис. 77. Действительно, если после образования промежуточной структуры, в которой концы транспозона объединены с концами ДНК-мишени (рис. [c.118]

    Многие репликоны используют, по-видимому, совершенно иную стратегию регуляции собственного синтеза. Для инициации репликации этих репликонов необходим белок-инициатор (например, белок Е в случае плазмиды F). от белок специфически связывается с определенной последовательностью ДНК, многократно повторенной на данном репликоне. Связывание белка-инициатора с одной или несколькими такими последовательностями, находящимися в ориджине, необходимо для инициации. Одна из последовательностей находится в начале гена бел ка-инициатор а, так что связывание с ней белка подавляет его собственный синтез. Считается, что регуляция репликации осуществляется благодаря сложной конкуренции за белок-инициатор между участком ДНК, необходимым для собственной репрессии, участком (или участками), необходимым для инициации синтеза ДНК, и другими участками связывания. Хотя подобные репликоны пока еще недостаточно изучены и детальная картина регуляции репликации не ясна, очевидно, что наличие множественных мест связывания ключевого белка инициации репликации позволяет регуляторной системе очень чутко отзываться на изменение копийности репликона. Например, если плазмида содержит 10 повторенных мест связывания белка-инициатора, то появление за счет репликации од ой дополнительной копии плазмиды увеличит число участков связывания на 10. В определенном смысле многократно повторенные участки связывания белка-инициатора, суммарное количество которых пропорционально копийности репликона, аналогичны ранее рассмотренной ингибиторной РНК, концентрация которой также пропорциональна копийности. [c.67]


    Репликация каждого бактериального репликона, в частности хромосомы Е. oli, как правило, начинается в одной избранной области ДНК, называемой ориджином репликации (от англ. origin — начало, обозначается ori). Ориджин репликации каждого репликона имеет вполне определенную последовательность ДНК. В результате инициации раунда репликации иа ориджине образуются одна илн [c.60]

    Бактериальная хромосома отличается от плазмидных репликонов тем, что ввиду ее больших размеров раунд репликации занимает промежуток времени, [c.67]

    БАКТЕРИАЛЬНЫХ РЕПЛИКОНОВ ПО ДОЧЕРНИМ КЛЕТКАМ ПРИ ДЕЛЕНИИ [c.68]

    Многие мелкие репликоны используют альтернативную стратегию стабильного наследования. Они, по-видимому, не имеют механизма упорядоченной сегрегации, но поддерживаются в высоком числе копий. Высокая копийность обеспечивает относительно стабильное наследование репликона при случайном распределении молекул по дочерним клеткам при делении. Вероятность того, что репликон при таком способе распределения будет утерян (т. е. в одну из дочерних клеток не попадет ни одной копии ДНК данного репликона), равна (1/2) , где п — число копий, т. е. меньше 0,1 % уже для 10 копий плазмиды в клетке. Естественно, для этого способа принципиально важным является строгое восстановление копийности, чтобы единственная молекула ДНК успела быстро размножиться до характерного для нее числа копий до начала следую-ш,его деления клетки. [c.69]

    По крайней мере в случае фага Ми активность транспозазы ограничивается образованием структуры, показанной на рис. 77, дальнейшие события могут происходить без ее участия. Действительно, эта структура не что иное, как две направленные навстречу друг другу репликативные вилки. Репликация за счет клеточного репликативного аппарата приведет к удвоению мобильного элемента и, если транспозон и ДНК-мишень находились на разных кольцевых молекулах ДНК, к образованию коинтеграта (рис. 77). Следствием сдвига в 5 п. и.. между двумя разрывами ДНК-мишени является дупликация этого участка после репликации. В случае образования коинтеграта одна копия дуплицированного участка граничит с одной копией транспозона, а вторая — со второй. В том случае, если произошло перемещение транспозона с репликона на репликон, дупликация фланкирует с двух сторон новую копию транспозона (см. ниже). [c.117]

Рис. 70. Гомологичная рекомбинация между двумя кольцевыми репликонами Рис. 70. <a href="/info/33354">Гомологичная рекомбинация</a> между двумя кольцевыми репликонами
    Выше упоминалось, что мобильные элементы вызывают генетическую нестабильность поблизости от участка своей локализации. Эта особенность легко объясняется уже известными нам свойствами IS-элементов и транспозонов бактерий, На рис. 80 показано, что получится при перемещении в пределах одного репликона транспозона типа ТпЗ, т.е. с репликативным механизмом транспозиции. В зависимости от того, как внесены разрывы в ДНК-мишень, получится либо делеция, либо инверсия генетического материала между местом расположения транспозона и мишенью его перемещения. По-сути дела, образование делеции напоминает процесс распада коинтеграта, но поскольку одна из образовавшихся молекул ДНК не имеет ориджина репликации, она утрачивается. Если происходит инверсия, то на обеих ее границах оказывается по копии транспозона в инвертированной друг относительно друга ориентации. Таким образом, образование делеций и инверсий характерно для репликативг ного механизма транспозиций. [c.120]

    Очень важное свойство мобильных элементов бактерий состоит в том, что они способны вызывать слияние репликонов, или образование коинтегратов. Например, плазмида, в состав которой входит [c.114]

    Ключевым свойством бактериальных мобильных элементов, обеспечивающим их сохранение, яапяется их способность перемещаться с репликона на репликон. Наличие у бактерий трансмиссивных н мобилизуемых плазмид позволяет транспозонам и 15-элементам не только переходить с плазмиды на плаз.миду или из хромосо.мы на плазмиду, но и путешествовать из клетки в клетку в составе плазмид. Таким путем мобильные элементы могут распространяться в бактериальных популяциях, даже если не приносят своим хозяевам никаких преимуществ. В этой связи следует упомянуть о явлении и.м.чунности к транспозиции многие транспозоны и 15-эле.менты Значительно чаще перемещаются на новые репликоны, чем на новое Место в составе того репликона, в котором они находятся. Молекулярный механизм этого свойства еще не выяснен, но очевидно, что оно способствует распространению мобильного элемента по максимальному количеству репликонов. [c.123]

    Эукариотические вирусы до сих пор нашли более скромное применение в качестве векторов. Практически используются только онкогенный вирус SV 40 и его производные. Все эти векторы — дефектные вирусы, не способные давать полноценные вирусные частицы в клетке хозяина. Анализируемую ДНК можно вводить и в другие репликоны, способные размножаться в клетках, например бактериофаги. Чаще всего из известных фагов в качестве векторов применяют сконструированные производные фага X и фагов М13 и fd. В векторах на основе бактериофага I. используется его особенность, состоящая в том, что большая часть его ДНК не участвует в размножении фага в клетке. Это позволяет вводить чужеродную ДНК в ДНК фага X в качестве вектора. [c.120]


    Инициация синтеза ДНК - возникновение нескольких участков репликации (репликонов), где двухцепочечная молекула ДНК расплетается и возникает репликативная вилка. После расплетания цепи стабилизируются специальными белками. Здесь, в месте образования репликативной вилки, и происходит синтез новой ДНК в виде первой стадии - репликации. Родительская ДНК расплетена и находится в одноцепочечной форме. Каждая из цепей служит матрицей для синтеза новой ДНК. В ходе синтеза репликативная вилка перемещается вдоль молекулы, при этом расплетаются все новые участки, что происходит до тех пор, пока вилка не дойдет до точки окончания синтеза (точка терминации). [c.55]

    Последовательность ориджина способствует необходимому для начала синтеза ДНК расплетанию двойной спирали ДНК и служит участком сборки, посадки на ДНК активного комплекса белков, осуществляющих репликацию. Чем же ориджины репликации отличаются от прочих последовательностей ДНК, что определяет их специфичность Для разных репликонов ответ может быть различным, однако часто оказывается, что специфичность ориджина определяется специальным белком, участвующим в инициации синтеза ДНК и способным избирательно связываться с последовательностью нуклеотидов данного ориджина. Наличие на одном репли-коне ориджина и гена, кодирующего специфичный к нему белок-инициатор, обеспечивает самоподдержаиие этого репликона Б клетке. [c.61]

    При каждом клеточном делении каждая молекула ДНК должна удваиваться, т. е. на каждом ориджине должен происходить в точности один акт инициацни репликации. В противном случае постепенно происходила бы утеря репликона или его бесконтрольное накопление. Более того, даже если репликон удваивается в среднем точно один раз на каждое клеточное деление, возможны существенные вариации количества копий этого репликона вокруг среднего значения в разных клетках бактериальной популяции. Такие вариации недопустимы, так как тоже в конце концов ведут к потере репликона. Таким образом, к регуляции репликации предъявляются достаточно жесткие требования регуляторная система должна чувствовать отклонения в обе стороны от среднего числа копий данного репликона и соответствующим образом менять частоту инициации на ориджине. Очевидно, что частота инициации должна быть согласована также со скоростью роста клеток. [c.63]

    Профаг PI не единственный обладатель системы сайт-специфической рекомбинации, необходимой для стабильного наследования. Такие же системы есть у многих других плазмид. В связи с этим необходимо отметить, что к кольцевым репликонам относится также бактериальная хромосома, при упорядоченной сегрегации которой также могут возникать сложности, аналогичные описанным выше для фага Р1 (см. рис. 70). На этом основании можно предположить возможность наличия сайт-специфической системы реко.мбинации, мономеризующей бактериальную хромосому перед делением клеток. [c.106]

    Важное достижение М. б.-раскрытие на мол. уровне механизма мутацгш. Главную роль в нем играют выпадения, вставки и перемещения отрезков ДНК, замены пары нуклеотидов в функционально значимых отрезках генома. Определена важная роль мутаций в эволюции организмов (в СССР инициатором исследований мол. основ эволюции бьш А. Н. Белозерский). Раскрыты мол. основы таких генетич. процессов у прокариот (бактерии и синезеленые водоросли) и эукариот (все организмы, за исключением прокариот), как рекомбинация генетическая - обмен участками хромосом, приводящий к появлению бактерий (вирусов) с новым сочетанием генов. Достигнуты значит, успехи в изучении строения клеточного ядра, в т.ч. хромосом эукариот. Усовершенствование методов культивирования и гибридизации животных клеток. способствовало развитию генетики соматич. леток (клеток тела). Была развита идея о репликоне (элементарная генетич. структура, способная к репликации как единое целое), объясняющая важные аспекты регуляции репликации (Ф. Жакоб и С. Бреннер, 1963). Значит, успех М. 6.-первый КИМ. синтез геиа, к-рый осуществил в 1968 X. Корана. Данные о хим. природе и тонком строении генов способотвовали разработке методов их выделения (впервые осуществлено в 1969 Дж. Беквитом). [c.110]

    В случае кольцевого репликона (напр,, у плазмиды) описанный процесс наз, 0-репликацией. Т.к. кольцевые молекулы ДНК закручешл сами на себя (суперспиралюо-ваны), при раскручивании двойной спирали в, процессе Р. они должны непрерывно вращаться вокруг собств. оси. При этом возникает торсионное напряжение, к-рое устраняется путем разрыва одной из цепей. Затем оба конца сразу же вновь соединяются друг с другом. Эту ф-цию вьшолняет фермент Щ1К-топоизомераза. Р. в этом случае обычно происходит в двух направлениях, т.е. существуют две решшкац. вилки (рис. 4). После завершения Р. появляются две двухцепочечные молекулы, к-рые сначала связаны друг с другом как звенья одной цепи. При их разделении одно из двух колец временно разрьшается. [c.253]

    Альтернативный вариант Р. кольцевого репликона предполагает разрыв в одной из цепей двухспиральной молекулы ДНК. Образовавшийся при этом свободный З -конец ковалентно наращивается, оставаясь связанным с матрицей Свторой, неразорванной цепью), а 5 -конец постепенно вытесняется новой полинуклеотидной цепью (рис. 5). Таким образом одна цепь разматьгаается и непрерывно удлиняется, а репликац. вилка скользит вокруг кольцевой матричной цепи (механизм катящегося кольца ). По мере роста новой цепи вытесненная цепь с освободившимся 5 -концом стано- [c.253]

    Еще одна схема Р. предполагает формирование структуры, названной В-петлей. Согласно этому механизму, сначала реплицируется только одна из цепей кольцевого репликона, тогда как вторая цепь, оставаясь интактной, вытесняется, образуя петлю. Р. второй цепи начинается с др. стартовой точки и только после того, как реплшщровалась часть первой цепи. Такой механизм Р. обнаружен, напр., у митохондриальных ДНК. [c.253]

    Векторы для клонирования в таких системах представляют собой двойные репликоны, способные существовать и в . соН, и в той клетке хозяина, для которой они предназначены. С этой целью создают гибридные векторы, содержащие репликон какой-либо из плазмид Е. соИ и требуемый репликон (из бактерий, дрожжей и др.), и первоначально клонируют с последующим отбором требуемых генов в хорошо изученной системе. Затем вьщеленные рекомбинантные плазмиды вводят в новый организм. Такие векторы должны содержать ген (или гены), придающий клетке-хозя-ину легко тестируемый признак. [c.124]


Смотреть страницы где упоминается термин Репликоны: [c.61]    [c.63]    [c.64]    [c.65]    [c.66]    [c.69]    [c.110]    [c.112]    [c.114]    [c.117]    [c.120]    [c.123]    [c.124]    [c.79]    [c.252]    [c.252]    [c.253]    [c.118]    [c.61]   
Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.60 , c.63 , c.64 , c.67 , c.70 , c.112 , c.116 , c.117 , c.118 , c.119 , c.120 , c.121 , c.122 , c.123 , c.127 ]

Молекулярная биология (1990) -- [ c.60 , c.63 , c.64 , c.67 , c.70 , c.110 , c.112 , c.116 , c.124 , c.127 ]

Биоорганическая химия (1987) -- [ c.407 , c.430 , c.433 ]

Гены (1987) -- [ c.396 , c.397 , c.398 , c.399 , c.400 , c.401 , c.402 , c.403 , c.404 , c.405 , c.406 , c.407 ]




ПОИСК







© 2025 chem21.info Реклама на сайте