Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ретровирусы

    Переходим к рассмотрению вирусных систем, в которых цикл репликации генома схематически можно разбить на две главные реакции синтез РНК на матрице ДНК и синтез ДНК на матрице РНК-При этом в состав вирусной частицы в качестве генома может входить либо РНК (как у ретровирусов), либо ДНК (как у вирусов гепатита В и мозаики цветной капусты). [c.308]

    Репликация транскрипция генома ретровирусов (РНК—ДНК- РНК) [c.308]

    У некоторых ретровирусов эта достаточно сложная картина еще более усложнена в вирусно.м геноме могут быть дополнительно закодированы белки, регулирующие эффективность транскрипции про-вируса. [c.315]


    Таким образом, общая схема репликации / транскрипции генома этих вирусов поразительно похожа на схему репликации / транскрипции генома ретровирусов, По-видимому, это сходство имеет под собой эволюционную основу во всяком случае, аминокислотные последовательности обратных транскриптаз всех трех групп вирусов (гепатита В, мозаики цветной капусты и ретровирусов) выявляют определенное сходство между собой. [c.316]

    Аспартатные протеиназы ретровирусов уже через два-три года после (IX открытия стали одними из наиболее экспериментально изученных фер-Центов. Основное внимание было уделено протеиназе ШУ-1, о структуре к функции которой сейчас известно, пожалуй, больше, чем о таком классическом объекте, как пепсин, открытом еще в 1836 г. Подробно об этом в следующем томе. Сейчас лишь отметим, что стал очевиден один из эффективных и простых путей поиска средств защиты от ретровируса. Он Заключается в создании особых ингибиторов аспартатной протеиназы [c.545]

    Велики заслуги генной инженерии в изучении раковых заболеваний 1) открыты ретровирусы (РНК-вирусы), содержащие ревертазу, - фермент, катализирующий синтез ДНК на основе РНК. РНК-вирусы могут долго размножаться в клетках, не делая их злокачественными. При переходе в форму ДНК, эти вирусы интегрируются в геном и кодируют белок, который трансформирует нормальную клетку в злокачественную. Такие вирусы называют онковирусами. Последовательности генов, кодирующих трансформирующие белки, получили название онкогенов и именно на подавление их активности сейчас направлены основные усилия в борьбе с онкологическими заболеваниями. Сегодня все исследователи пришли к выводу, что причиной рака является нарушение регуляции работы генов. [c.63]

    Использование ретровирусных векторов имеет и еще один большой недостаток. Хотя эти векторы создаются так, чтобы они были дефектными по репликации, геном штамма ретровируса (вируса-помощника), который необходим для получения большого количества векторной ДНК, может попасть в то же ядро, что и трансген. Несмотря на все принимаемые меры, ретровирусы-помощники могут реплицироваться в организме трансгенного животного, что совершенно недопустимо, если этих животных предполагается использовать в пищу или как инструмент для получения коммерческого продукта. И поскольку существуют альтернативные методы трансгеноза, ретровирусные векторы редко используются для создания трансгенных животных, имеющих коммерческую ценность. [c.419]

    Ретровирусы — это обширная группа вирусов, представители которой различаются как по биологическим свойствам (например, по способности вызывать злокачественные опухоли), так и по морфоло- [c.308]

    В вирусной РНК записана информация для синтеза по крайней мере трех групп вирус-специфических белков структурных белков сердцевины вириона (Qag-белков), ферментативных белков, принимающих участие в обратной транскрипции вирусного генома и в интеграции вирус-специфической ДНК и клеточной хромосомы (продуктов гена pol), и белков, входящих в состав наружной липо-протеидной оболочки вириона (Env-белков). У некоторых ретровирусов есть дополнительные гены нередко наблюдаются также всякого рода перестройки генома, что обычно ведет к дефектности вируса, т. е. к его неспособности размножаться без вируса-помощника. [c.309]


    Вирусная частица содержит две молекулы геномной РНК таким образом, редкой (если не уникальной) особенностью ретровирусов является диплоидность их генома. [c.309]

    Не все детали приведенной схемы образования вирус-специфн ческой ДНК строго доказаны, и в дальнейшем в нее, возможно, будут внесены те или иные поправки. Тем не менее эта схема достаточно хорошо иллюстрирует общий принцип. Весьма важно, что схема объясняет одну чрезвычайно существенную особенность структуры вирус-специфических ДНК ретровирусов — молекулы вирусных ДНК длиннее молекул вирусных РНК, которые послужили матрицей для обратной транскрипции. Действительно, к 5 -концу (-f)uenH вирусной ДНК добавилась последовательность иЗ, а к З -концу этой цепи — последовательность u5. В результате на концах молекулы вирус-специфической ДНК появился длинный (несколько сотен нуклеотидов) концевой повтор (ДКП, или LTR), имеющий структуру иЗгиЬ (рис. 160). [c.312]

    Встраивание вирусного генома в клеточную хромосому — обязательная стадия репродукции ретровирусов независимо от того, обладают ли они онкогенным (трансформирующим) действием. Реплици-руясь в.месте с клеточной ДНК при митозе, вирус-специфическая ДНК — провирус — передается в дочерние клетки. [c.313]

    Синтез РНК ретровирусов происходит тогда, когда геном вируса в виде провирусной ДНК является интегральной частью клеточной хромосомы. Соответственно образование вирусных транскриптов идет в ядре и осуществляется клеточным транскрипционным аппаратом в качестве основного фермента используется РНК-полимераза П. Поэтому большинство проблем, которые при этом нужно решить,— это обычные проблемы клеточной транскрипции (и посттран-скрипционного процессинга), которые здесь описаны не будут. Но возникают и специфические проблемы. [c.314]

    Промоторные элементы провируса расположены в районе иЗ таким образом, возможность транскрипции провируса возникает после появления района иЗ впереди вирусного ДНК-генома, т. е. после возникновения LTR. Примерно за 25 п. и. до стартовой точки транскрипции(до л) имеется характерный ТАТА-элемент, за 75 п. и.— СААТ-элемент и за 100—300 п. н.— энхансер. У разных ретровирусов энхансер имеет разную силу , а у онкогенных ретровирусов сила энхансера может коррелировать со способностью вируса вызывать злокачественную транс( юрмацию клеток-мишеней. Для активирования энхансера необходимо его взаимодействие с клеточными белками-регуляторами в некоторых случаях, например у мышиного вируса рака молочных желез, эффективность энхансера регулируется гормонами (через посредство белков — рецепторов гормонов). [c.314]

    Первичные транскрипты провир уса подвергаются обычным пост-транскрипционным модификациям кэпированию 5 -конца, полиаденилированию З -конца (в районе г есть сигнал полиаденилирования) и сплайсингу (рис. 162). Последняя модификация затрагивает не все транскрипции провируса — часть из них выходит в цитоплазму, сохраняя всю последовательность нуклеотидов. Такие молекулы РНК (помимо того, что они функционируют как мРНК для некоторых белков) включаются в вирион тем самым завершается цикл репликации/транскрипции генома ретровирусов. [c.315]

    У эукариот (все организмы, за исключением бактерий и синезеленых водорослей) также широко распространены М г.э., к-рые аналогичны М.г.э. прокариот по общему плану строения, способу транспозиции и генетич. эффекту. Элементы, подобньге 18 и гранспозонам, найдены у мн. эукариот (грибы, растения, млекопитающие и др.). Разл. эписомоподобные факторы обнаружены в ядре и цитоплазме дрожжей Умеренным фагам бактерий соответствуют онкогенные вирусы, в частности РНК-содержащие вирусы (ретровирусы) позвоночных. [c.80]

    Мобильными элементами генома эукариот являются также проретровирусы (интегрированные в геном ретровирусы), транспозиция к-рых, вероятно, осуществляется по такому же механизму, как и у МДГ. Не исключено, что последние и проретровирусы являются генетич. элементами одной природы. [c.80]

    Среди РНК-зависимых ДНК-полимераз (обратных транскриптаз) наиб, изучены ферменты, продуцируемые ретровирусами (в т.ч. вирусом, вызывающим СПИД), гепаднавирусами (напр., вызывающими гепатит В) и др. Они также сильно различаются по мол. массе, субъ-единичному составу содержат полимеризующий активный центр, а иногда также эндорибонуклеазный активный центр, расщепляющий вирусную РНК после окончания синтеза на ней провирусной ДНК. [c.625]

    Детальное исследование молекулярной организации генома высших эукариот, особенно млекопитающих, показало, что существенная часть генома, около 10 % общей массы ДНК, образовалась в результате интеграции в геном фрагментов ДНК, синтезирован-лых на РНК-матрицах в результате обратной транскрипции (рис. 118, а). Впервые подобный процесс был описан при исследовании ретровирусов, в геноме которых имеется ген, кодирующий обратную транскриптазу (ревертазу) (см. гл. ХИ1). В геноме млекопитающих, птиц, амфибий и насекомых обнаруживаются ретропо-зоны, представляющие собой внедрившиеся в геном ДНК-копии, синтезированные на разных типах клеточных РНК как на матрицах. Молекулярные механизмы ретропозиции не изучены, остается не установленным источник клеточной обратной транскриптазы. Не ясно, что служит затравкой для ревертазы возможно, это шпилька на З -конце РНК, образующаяся в результате комплементарных взаимодействий. Как будет видно, структура ретропозонов позволяет с уверенностью говорить об участии обратной транскрипции в процессе их образования. Таким образом, наряду с переносом информации от ДНК к РНК осуществляется и обратный процесс — возвращение ее в геном в виде ретропозонов. У млекопитающих ретропозоны составляют более 10 % ДНК следовательно, мощность встречного потока информации от РНК к ДНК может быть существенной, по крайней мере при оценке его во временном эволюционном масштабе. Различают разные типы ретропозонов. [c.222]


    Число копий длинных повторов составляет у млекопитающих 3-10 т. е. около 10 % массы ДНК- В длинных повторах обна-"руживается одна или несколько достаточно протяженных открытых рамок трансляции, где выявляется заметная гомология с нуклеотидными последовательностями, кодирующими ревертазу у ретровирусов. Гомология нуклеотидных последовательностей открытых рамок трансляции прослеживается у разных видов, однако за пределами открытой рамки трансляции гомология теряется. Полагают, что родоначальницей длинных повторов млекопитающих послужила фракция полиаденилированных РНК, кодирующих белки, обладающие ревертазной активностью. Соответствующие полиаденилированные транскрипты размером 6000 нуклеотидов обнаруживаются в недифференцированных эмбриональных клетках млекопитающих. Не исключено, что в результате трансляции таких транскриптов образуется клеточная ревертаза. [c.225]

    В настоящее время наиболее вероятной представляется такая последовательность событий, ведущих к включению вирус-специфической ДНК ретровирусов в клеточную хромосому (рис. 161). После образования кольцевой молекулы в месте стыка двух LTR возникает короткий несовершенный инвертированный повтор. Этот повтор выполняет функцию att, т. е. специфического участка интеграции. Участок att узнается вирус-специфическим с рментом, обладающим эндонуклеазной активностью — одним из продуктов гена poU который попадает в клетку из заражающей вирусной частицы. Фермент вносит в обе цепочки молекулы вирус-специфической ДНК разрывы на расстоянии 4 нуклеотидов друг от друга. Этот же фермент вносит ступенчатый разрыв (на расстоянии 4—6 нуклеотидов) и в клеточную ДНК- Положение разрыва в клеточной ДНК не фиксировано. Далее происходит интеграция вирусной ДНК в хозяйскую хромосому. Предполагают, что механизм интеграции напоминает тот, который реализуется в фаговых системах, прежде всего у фага Ми (см. раздел 1 этой главы), т. е. разрывы цепей ДНК и воссоединение гетерологичных нуклеотидных последовательностей осуществляет один и тот же фермент — особая топоизомераза (интеграза). Процессы типа репарационных (застраивание брешей и удаление одноцепочечных хвостов ) приводит к двум последствиям во- [c.312]


Смотреть страницы где упоминается термин Ретровирусы: [c.222]    [c.225]    [c.227]    [c.311]    [c.312]    [c.620]    [c.624]    [c.701]    [c.501]    [c.545]    [c.227]    [c.311]    [c.542]    [c.420]   
Смотреть главы в:

Новое в клонировании ДНК Методы -> Ретровирусы

Генетическая инженерия -> Ретровирусы


Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.308 , c.315 ]

Молекулярная биология (1990) -- [ c.308 , c.315 ]

Молекулярная биотехнология принципы и применение (2002) -- [ c.488 , c.488 , c.491 , c.493 ]

Биологическая химия (2002) -- [ c.197 ]

Молекулярная биология клетки Том5 (1987) -- [ c.0 ]

Основы биохимии Т 1,2,3 (1985) -- [ c.920 ]

Общая микробиология (1987) -- [ c.137 , c.153 ]

Биология Том3 Изд3 (2004) -- [ c.36 , c.38 , c.39 , c.198 , c.233 ]

Современная генетика Т.3 (1988) -- [ c.49 , c.50 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.320 , c.321 , c.467 , c.468 , c.469 , c.470 ]

Генетика человека Т.3 (1990) -- [ c.143 ]

Химия протеолиза Изд.2 (1991) -- [ c.173 ]

Генетика с основами селекции (1989) -- [ c.251 , c.540 ]

Искусственные генетические системы Т.1 (2004) -- [ c.20 ]

Основы генетической инженерии (2002) -- [ c.46 , c.49 , c.52 , c.53 , c.54 , c.55 , c.56 , c.64 , c.103 , c.402 , c.403 , c.413 , c.414 ]

Гены и геномы Т 2 (1998) -- [ c.38 , c.52 , c.93 , c.94 , c.95 , c.96 , c.260 , c.268 , c.269 , c.270 , c.271 , c.292 , c.344 , c.345 ]

Что если Ламарк не прав Иммуногенетика и эволюция (2002) -- [ c.26 ]

Молекулярная биология клетки Сборник задач (1994) -- [ c.37 , c.178 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.320 , c.321 , c.467 , c.468 , c.469 , c.470 ]

Биохимия Т.3 Изд.2 (1985) -- [ c.179 , c.189 ]




ПОИСК







© 2025 chem21.info Реклама на сайте