Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экспериментальное изучение

    Задачи неустановившегося движения жидкости и газа в пласте решаются методами математической физики. Для этого составляются и затем интегрируются дифференциальные уравнения. Чтобы вывести дифференциальные уравнения фильтрации в пористой среде, заключающей в себе движущийся флюид (жидкость, газ), выделяется бесконечно малый элемент пласта и рассматриваются изменения массы, импульса и энергии, происходящие в этом элементе за бесконечно малый промежуток времени. При этом используются законы сохранения массы, импульса и энергии, а также результаты лабораторного или промыслового экспериментального изучения свойств и поведения флюидов и свойств пористой среды с изменением термобарических условий. [c.36]


    Экспериментальному изучению массообмена в системах жидкость -жидкость в случае лимитирующего сопротивления сплошной фазы посвящено большое количество экспериментальных исследований [257, 301, 302]. При отсутствии ПАВ массообмен в капли удовлетворительно описывается уравнением Буссинеска — Хигби (4.16) в интервале 10 < [c.203]

    Чтобы получить представление о достоверности кинетических данных, важно-изучить источники ошибок. Существуют две связанные между собой величины, которые можно получить непосредственно из изотермического эксперимента удельная константа скорости и время частичного превращения (например, полупревращения). Эти величины не независимы, и одна может быть вычислена из другой. Экспериментальное изучение кинетической системы обычно завершается определением энергии активации. Эта энергия может быть вычислена из удельных констант скорости при различных температурах. [c.82]

    Эти общие заключения о природе перенапряжения на разных металлах подтверждаются в общих чертах соответствием между наиболее важными следствиями из теории перенапряжения водорода и данными, полученными при экспериментальном изучении кинетики выделения водорода. Так, на поверхности ртути в области потенциалов катодного выделения водорода ни одним из методов не удается обнаружить заметных следов адсорбированного атомарного водорода. Следовательно, стадия его удаления не является лимитирующей. Предлогарифмический коэффициент Ь на ртути близок к 0,12. При учете ничтожно малого заполнения поверхности ртутного катода адсорбированным атомарным водородом такое значение величины Ь не может быть получено из теории замедленной рекомбинации. Экспериментальные данные по влиянию состава раствора и pH на перенапряжение при выделении водорода на ртути также лучше всего согласуются с предположением о замедленности разряда на свободных участках катода. [c.413]

    Наклоны Ь (см. табл. 20.1 и рис. 20.1), найденные при экспериментальном изучении выделения кислорода из кислых растворов [c.425]

    Гл. IV. Экспериментальное изучение простых кинетических систем [c.62]

    При экспериментальном изучении зависимости силы сопротивления шара от скорости потока удобно обратить гидродинамическую задачу, т. е. предоставить шару свободно падать, например, под действием силы тяжести, в неподвижной жидкости. Обозначив плотность вещества шара через рт и учитывая поправку на закон Архимеда, при равномерном установившемся падении шара имеем равенство веса шара силе сопротивления, оказываемого этому движению  [c.26]


    Система — изолированная или ограниченная часть Вселенной, подвергающаяся теоретическому или экспериментальному изучению. [c.35]

    ЭКСПЕРИМЕНТАЛЬНОЕ ИЗУЧЕНИЕ ПРОСТЫХ КИНЕТИЧЕСКИХ СИСТЕМ [c.59]

    Точный расчет представляет значительные трудности и требует детального экспериментального изучения гидродинамики потоков. В настоящее время проведение такого рода расчетов не представляется возможным. В связи с этим в последние годы успешно развивались приближенные методы расчета массопередачи с учетом продольного перемешивания. Наибольшее развитие и применение получили методы расчета на основе диффузионной и ячеечной моделей. [c.231]

    Детальное экспериментальное изучение химических реакций, лежащих в основе разрабатываемого процесса, — необходимое условие для получения его надежной кинетической модели. В случае быстро протекающих реакций (время полупревращения порядка от долей секунды до нескольких минут), которые реализуются в промышленности в виде непрерывных процессов, проходящих в проточных реакторах, метод исследования кинетики в периодически действующих изотермических реакторах, кратко изложенный в этой главе, непригоден. Изучение кинетики таких реакций, к которым относятся подавляющее большинство каталитических и все газовые реакции, проводят в специальных установках проточного типа. [c.35]

    ЭКСПЕРИМЕНТАЛЬНОЕ ИЗУЧЕНИЕ КИНЕТИКИ СЛОЖНЫХ ПРОЦЕССОВ [c.90]

    Гл. I. Экспериментальное изучение кинетики сложных процессов [c.92]

    Гл. V. Экспериментальное изучение кинетики сложных процессо  [c.94]

    Знание механизма процесса позволяет описать скорость химической реакции соответствующим математическим уравнением, на основе которого можно произвести корреляцию опытных данных и их экстраполяцию за пределы экспериментально изученного интервала рабочих условий. Эта область исследований скорее относится к химии, однако общий характер таких исследований будет кратко освещен в настоящей книге. [c.13]

    Кинетические данные обычно представляют собой результаты измерения концентраций некоторых реагентов или каких-то других переменных (связанных с концентрациями) в зависимости от времени при определенных условиях, чаще всего изотермических. Задача состои+ в том, чтобы выразить существующие между ними связи соответствующим кинетическим уравнением, позволяющим экстраполировать данные за пределы экспериментально изученных условий. В общем случае такие уравнения находят путем подбора. Стехиометрия реакции обусловливает ту форму уравнения, которую следует проверить в первую очередь. Если эта попытка окажется неудачной, такая реакция требует специального изучения, и успех в выводе уравнения скорости по экспериментальным данным будет зависеть от способностей исследователя. [c.55]

    При экспериментальном изучении процесса стремятся вести его в условиях, когда определяющим является только один из факторов, влияющих на скорость. Хотя по этим данным нельзя точно рассчитать скорость при другом режиме работы, во многих случаях соответствующие расчеты можно выполнить, исходя из предельных условий. [c.174]

    В настоящей главе будут рассмотрены наиболее существенные факторы, влияющие на скорость отдельных стадий реакции, и отчасти показаны пути определения лимитирующих стадий. Комбинируя стадии простейших реакций, иногда можно вывести довольно несложные уравнения, поддающиеся решению. В других случаях попытки составить уравнение скорости на основании предполагаемого механизма могут оказаться несостоятельными и для расчета скорости реакции часто приходится прибегать к эмпирическим уравнениям. Следует указать, что при этом широкая экстраполяция данных за пределы экспериментально изученного интервала рабочих условий оказывается ненадежной. [c.203]

    Естественное физическое моделирование-это замена изучения интересующего нас явления в натуре экспериментальным изучением аналогичного явления на модели меньшего (или большего) масштаба, обычно в специальных лабораторных условиях. Основной смысл такого моделирввания заключается в том, чтобы по результатам опытов с моделями можно было давать необходимые ответы о характере эффектов и о различных характеристиках, связанных с явлением в натурных условиях. При этом должны выполняться определенные условия (критерии) подобия (геометрического и физического) модельных и натурных процессов. Для этого размеры модели, свойства пласта и флюидов выбирают в лабораторных условиях таким образом, чтобы были выполнены условия геометрического, подобия и чтобы соотношения различных сил в пласте и физической модели были одинаковыми. Большое значение при физическом моделировании фильтрационных процессов имеет теория размерностей и подобия. [c.374]

    Допущение, что скорость дезактивации не зависит от внутренней энергии, является до некоторой степени грубым. Имеется экспериментальное доказательство, что скорость потери колебательной энергии молекулой Ij при столкновении примерно в 100 раз больше для высоко возбужденных состояний, чем для более низких энергетических состояний. Ельяшевич [4], Мотт и Массей [5] сделали приближенные квантовомеханические расчеты, которые указывают, что при соударении с атомом потеря или приобретение кванта колебательной энергии гармоническим осциллятором пропорциональна энергии осциллятора. Другая работа по этой проблеме заключалась в экспериментальном изучении дисперсии звука в газах. Эти измерения показали [6], что для самых низких вибрационных состояний величина Хо равна около 10 , но может сильно варьировать от газа к газу и сильно зависит от химической природы соударяющихся газов. [c.210]


    Если элементы схемы можно считать линейными, то и всю технологическую схему вместе с регуляторами можно рассчитать, не прибегая к эксперименту. Если же требуется получить экспериментальные данные, то частотная характеристика не совсем подходит для расчета химических систем. Для определения реакции системы на возмущение этот метод требует большого количества данных в широких пределах изменения частот Для экспериментального изучения гораздо удобнее пользоваться переходными характеристиками, если обращено внимание на разнообразие входных сигналов. [c.105]

    Модель полной передаточной функции является наиболее подходящей для отображения опытных данных. Как показано на рис. 1Х-2, экспериментальное изучение функции отклика, проводимое методом частотных характеристик импульсным методом з или путем статистического анализа сведений о нормальной работе объекта всегда дает в результате эмпирическую математическую модель процесса, поскольку проверить все функции отклика аппарата на все возможные типы возмущений практически невозможно. [c.113]

    Экспериментальное изучение автоколебательных систем показывает, что в зависимости от условий автоколебания могут возникать двумя путями  [c.142]

    При экспериментальном изучении опи должны выглядеть как реакции первого порядка по органическому галоиду и нулевого порядка но Н2О скорость реакции должна зависеть от ионизующей силы растворителя. Истинный механизм реакции, по-видимому, гораздо сложнее, так как для трго, чтобы ионизация частицы прошла в один элементарный акт, взаимодействие нон — растворитель должно было бы быть очень большим. [c.472]

    При экспериментальном изучении процесса гидтообпагораживания остатков особое внимание уделяется проблеме выбора способа проведения эксперимеитов. [c.90]

    Экспериментальное изучение каталитического 1 рекинга показало, что при обычных режимах и одинаковых условиях процесса наиболее устойчивыми являются незамещенные ароматические углеводороды. За ними следуют парафиновые углеводороды. Значительно легче крекируются нафтено-ароматические и высокораз-ветвлейные парафиновые углеводороды и еще быстрее — нафтено-гые, а также заыеп1енные арома Ические углеводороды. Олефины наименее стойки в условиях каталитического крекинга. Образующиеся при расщеплении парафинов нормального строения л й-новые углеводороды легко изомеризуются и дальше часть их превращается в результате реакций перераспределения водорода в изопарафины. Скорость крекинга парафиновых и нафтеновых углево дородов быстро растет с увеличением молекулярного веса соеди-ненив. [c.34]

    Исследованию и расчету колонных химических реакторов и процессам абсорбции и десорбции в колонных аппаратах посвящена об-щирная литература. Больщинсгво работ относится к экспериментальному изучению конкретных систем и получению эмпирических формул дпя расчета аппаратов. В ряде работ применяются пленочная и пенетрационная модели массопередачи с химическими реакциями, изложенные в гл. 6. Поскольку, однако, эти модели разработаны для случая постоянства концентрации хемосорбента и абсорбтива (экстрактива) в сплошной и дисперсной фазах, их применение дпя расчета прямо- и противоточных аппаратов затруднено. Обычно при расчете колонных аппаратов полагают, что коэффициент ускорения массообмена вследствие протекання химических реакций постоянен по высоте колонны. Это допущение может привести в ряде случаев к существенным ошибкам. [c.286]

    Реакции (VII) и (VIII), введенные в реакционный механизм для получения желательного уравнения скорости, вполне вероятны, однако предполагаемое отсутствие реакций НОа в газовой фазе реакций СНО3, на поверхности, требует еще доказательств. Тем не менее из очень ограниченного числа возможных схем сделанный нами выбор представляется наиболее правдоподобным. Совершенно ясно, что требуется дальнейшее экспериментальное изучение системы метан—кислород. Желательно получить как можно больше данных о влиянии на процесс диаметра сосуда, давления, состава смеси, добавок инертных газов и температуры необходимо, чтобы при этом обращалось внимание на пблучение хорошо вое-. производимых результатов, путем предотвращения случайных реакций на поверхности. [c.249]

    Интерпретация данных, полученных при экспериментальном изучени  [c.418]

    Существует три основных метода экспериментального изучения объектов автоматического управления метод частотных характеристик, изложенный Эйкманом и в книге под редакцией Ольденбургера импульсный метод, описанный Лисом и Хоу-геном , и метод авто- и взаимокорреляционных характеристик систем со случайным входом, изложенный Гудманом , Гудмэном и Резвиком и Резвиком . [c.148]


Смотреть страницы где упоминается термин Экспериментальное изучение: [c.81]    [c.59]    [c.102]    [c.104]    [c.18]    [c.224]   
Смотреть главы в:

Сверхвысокомодульные полимеры  -> Экспериментальное изучение

Химические применения мессбауэровской спектроскопии -> Экспериментальное изучение




ПОИСК







© 2025 chem21.info Реклама на сайте