Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транскрипция эукариот

    Инициация и регуляция транскрипции ДНК у эукариот с участием РНК-полимеразы в большей степени, чем у прокариот, зависит от множества других белков — факторов транскрипции, взаимодействующих с дискретными участками ДНК, образующих сложный эукариотический про.мотор. В районе промотора, прилегающего к сайту инициации транскрипции (кзп-сайту), обнаружены участки с характерными нуклеотидными последовательностями (мотивами), которые оказывают цис-действие на экспрессию близлежащего гена. Эти элементы могут взаимодействовать с РНК-полимеразой и другими белками-факторами транскрипции. Разные ядерные белковые факторы транскрипции, представляющие собой регуляторные белки, способны связываться с теми или иными нуклеотидными последовательностями ДНК, оказывая тем самым влияние На экспрессию разных генов. Такие белки, способные к диффузии [c.195]


    РЕГУЛЯТОРНЫЕ ЭЛЕМЕНТЫ ГЕНОВ И РЕГУЛЯЦИЯ ТРАНСКРИПЦИИ У ЭУКАРИОТ [c.195]

    Промоторные элементы генов одноклеточных эукариот — дрожжей — содержат сайты инициации (И), нуклеотидную последовательность ТАТА (обычно ТАТААА), а также другие элементы — активирующие последовательности (АП, UAS, англ. upstream a tivating sequen es), находящиеся перед сайтом инициации транскрипции (рис. 111, а). Кроме того, промотор может содержать элементы оператора О, участвующего в репрессии транскрипции. Расстояние между ТАТА-элементом и сайтом инициации может варьировать от 40 до 120 п. н., и в отличие, например, от промоторов позвоночных в промоторах дрожжей правильная точная инициация транскрипции сохраняется при изменении расстояния между сайтом инициации и ТАТА-элементом. Инициаторный элемент представляет собой особый участок, включающий нуклеотидную последовательность [c.196]

    Общие принципы регуляции транскрипции у прокариот хорошо известны (см. гл, 10). Однако многолетние поиски регуляторных белков эукариотической транскрипции пока привели к скромным успехам. У эукариот (за исключением дрожжей) не обнаружено Простых регуляторных генетических систем, доступных для биохимического исследования. Поэтому при поиске регуляторных ДИК-связывающих белков эукариот обычно используют различные варианты методов суррогатной генетики. [c.249]

    Гены рРНК у эукариот представлены тандемно повторяющимися копиями (100- 00), служащими матрицами для образования транскриптов, подвергающихся процессингу (рис. 98). Транскрибируемые последовательности разделены спейсерами, также играющими большую роль в транскрипции рРНК и ее регуляции (см. гл. X, [c.165]

Таблица 29.2. Факторы, влияющие на регуляцию транскрипции эукариот Таблица 29.2. Факторы, влияющие на <a href="/info/33341">регуляцию транскрипции</a> эукариот
    У эукариот различают четыре осн. класса Р., отвечающих соотв. за транскрипцию генов рибосомных РНК, матричных РНК, транспортных и др. низкомолекулярных РНК, а также за транскрипцию генома субклеточных органелл (митохондрий, хлоропластов). [c.268]

    У эукариот транскрипция изучена хуже, чем у бактерий. Это связано, в частности, с тем, что очищенные РНК-полимеразы эукариот не способны осуществить полный цикл транскрипции. Для этого всегда нужны дополнительные белковые факторы, лишь часть нз которых получена в очищенном виде. Пока эукариотический цикл транскрипции удается осуществить лишь в частично очищенных клеточных экстрактах, содержащих недостаточно охарактеризованные компоненты. Тем не менее можно считать, что в основных чертах цикл транскрипции эукариот и бактерий сходен. [c.137]


    Регуляция транскрипции ДНК-геномов вирусов эукариот [c.299]

    Двухнитевые РНК-геномы встречаются как у вирусов эукариот, так и у вирусов прокариот. Системы репликации / транскрипции у разных представителей этой группы вирусов могут заметно различаться. Рассмотрим, как эти процессы осуществляются у реовирусов (рис. 173). [c.328]

    Репрессия может не только частично сниматься под действием индуктора, но и усиливаться в присутствии конечного продукта метаболической цепи. В некоторых случаях подобная репрессия по типу отрицательной обратной связи также опосредуется аллостерическим изменением молекулы белка — репрессора. У эукариот контроль по типу отрицательной обратной связи может реализоваться, по-видимому, и на уровне транскрипции, и на уровне трансляции, как показано на рис. 6-15. [c.66]

    У высших многоклеточных эукариот (насекомых, позвоночных) в пределах 100—200 п. н. перед стартом транскрипции (рис. 111, б) была выявлена более сложная мозаика промоторных элементов, представленных короткими нуклеотидными последовательностями ( мотивами )). На расстоянии 27—30 п. н. от кэп-сайта расположен ТАТА-мотив, усредненный вариант которого (так называемый on- [c.198]

    Подобные регуляторные элементы, получившие название энхансеров (усилителей), широко распространены в генах многоклеточных эукариот, причем в отличие от генов дрожжей их действие осуществляется не только в положениях перед стартом транскрипции, но и сохраняется при перемещении в 3 -район гена. Оказалось, что ряд из вышеупомянутых нуклеотидных мотивов, обычно обнаруживаемых в промоторном районе, обладают свойствами энхансеров. [c.203]

    Изучение факторов транскрипции эукариот еще только начинается. Тем не менее уже определены некоторые структурные домены, создающие пространственный каркас, который обеспечивает специфические взаимодействия аминокислот с парами оснований. В каждом белке имеются два домена, один из которых отвечает за связывание ДНК, а второй-за регуляцию транскрипции. Домены не являются взаимозависимыми можно соединить домен связывания ДНК и регуляторный домен из разных белков и образовать факторы транскрипции со свойствами, характерными для каждого домена. Более того, если связывающаяся с белком последовательность располагается вблизи ТАТА-блока, то такие химерные белки могут присоединяться к ДНК и регулировать транскрипцию у целого ряда эукариот (например, дрожжей. Drosophila, лягушек и млекопитающих). [c.125]

    Молекулы предшественников зрелых клеточных РНК подвергаются расщеплению и химической модификации. Совокупность биохимических реакций, в результате которых уменьшается молекулярная масса РНК-предшественника и осуществляются разные способы химической модификации с образованием зрелых молекул РНК, называют процессингом. Процессинг наблюдается и в прокариотических клетках, но особенно аюжны превращения предшественников клеточных РНК в ядрах эукариот. Хромосомы эукариотической клетки, в которых осуществляется транскрипция, локализованы в ядре и отделены двойной ядерной мембраной от цитоплазмы, где протекает трансляция. В ядре синтезируются предшественники всех типов цитоплазматических РНК- Зрелые молекулы РНК транспортируются в цитоплазму. Механизм транспорта РНК из ядра в цитоплазму исследован недостаточно. Полагают, что процессинг РНК с образованием зрелых молекул продолжается и в ходе их транспорта в составе рибонуклеопротендных частиц через поры ядерных мембран. В клетках эукариот только незначительная часть, около 10%, транскрибируемых в ядре последовательностей ДНК выяыяется в составе цитоплазматических мРНК. Основная часть новообразованной РНК распадается в ядре и не обнаруживается в цитоплазме. [c.163]

    Опыты с искусственными генными конструкциями, составленными из отрезков ДНК разного происхождения, выявили существование особого цис-действующегоэлемента регуляции генов эукариот, получившего название усилителя (энхансера) или активатора транскрипции. Энхансеры представлены короткими последовательностями ДНК, состоящими из отдельных элементов (модулей), включающих десятки нуклеотидных пар. Модули могут представлять собой повторяющиеся единицы. Энхансер увеличивает эффективность транскрипции гена в десятки и сотни раз. Впервые энхансеры были обнаружены в составе геномов животных ДНК-содержащих вирусов (5У40 и полиомы), где они обеспечивают активную транскрипцию вирусных генов. Извлеченные из вирусных геномов и включенные в состав искусственных генетических конструкций, они резко усиливали экспрессию ряда клеточных генов. Позднее были обнаружены собственные энхансеры генов эукариотической клетки. Особенность энхансеров состоит в том, что они способны действовать на больших расстояниях (более чем 1000 п. н.) и вне зависимости от ориентации по отношению к направлению транскрипции гена. Оказалось, что энхансеры могут располагаться как на 5 -, так и на З -конце фрагмента ДНК, включающего ген, а также в составе интронов (рис. П2, а). Например, энхансеры были выявлены в районе 400 п. н. перед стартом транскрипции генов инсулина и химо-трипсина крысы. В случае гена алкогольдегидрогеназы дрозофилы энхансер был локализован за 2000 п. н. перед промотором. Энхансеры обнаружены на З ч )ланге гена, кодирующего полипептидный гормон-плацентарный лактоген человека, а также в составе интронов генов иммуноглобулинов и коллагена. [c.203]


    Белок TF 1П А был первым эукариотическим регуляторным полипептидом транскрипции с известной аминокислотной последовательностью, для которого удалось построит доменную структурную модель. В этом белке выявлены 9 повторяющихся, но отличающихся друг от друга доменов — пальцев , каждый из которых включает около 30 аминокислот. Домены содержат инвариантные-участки, включающие два цистеиновых и два гистидиновых остатка, связанных с ионом цинка (рис. 115). Концы разных пальцев (петли) несут варьирующие аминокислотные остатки, среди которых встречаются положительно заряженные, которые, по-видимому, способны легко взаимодействовать с ДНК. Как оказалось, подобная структура регуляторного белка закодирована в ряде других генов, кодирующих регуляторные белки эукариот. Так, ген Kruppel (калека), контролирующий развитие дрозофилы, кодирует белок, содержащий четыре подобных домена. Такие домены обнаружены и в белках — рецепторах гормонов. Предполагается, что выступающие связывающиеся с ДНК разные пальцы, соединенные друг с другом гибкими мостиками, осуществляют сразу несколько контактов с ДНК. Такая модель строения TF П1 А позволяет предполо- [c.211]

    Описанные случаи внедрения элемента сопровождаются мутациями с самыми разными фенотипическими проявлениями, обусловленными подавлением образования или, наоборот, гиперпродук-цией белка. Можно наблюдать полную или частичную реверсию мутаций к норме, вызванную вырезанием мобильного эле.мента при сохранении в составе хромодомы только одного ДКП. Перемещение мобильных элементов по геному могут способствовать распространению регуляторных сигналов (сайтов инициации транскрипции, сигналов полиаденилирования или энхансеров). Рать мобильных элементов в эволюции систем регуляции. может быть значительной, если принять во внимание, что геном эукариот кодирует транс-действующие белковые факторы, способные специфически регулировать инициацию транскрипции в районе ДКП. [c.230]

    Пожалуй, наиболее изученный регуляторный белок эукариот — фактор транскрипции генов 5S РНК шпорцевой лягушки. Его структура и механизм действия рассмотрены в гл. X. [c.250]

    Основа регуляции транскрипции в случае ДНК-содержащих вирусов эукариот та же, что и у ДНК-содержащих фагов,— взаимное расположение и сила промоторов и терминаторов. Но в эукариотных системах встречаются новые регуляторные элементы, прежде всего энхансеры (см. гл. IX). Кроме того, образование зрелых молекул мРНК у ДНК-содержащих вирусов эукариот обычно связано с разнообразными посттранскрипционными изменениями (процессингом) первичных транскриптов. Это обстоятельство вносит важный вклад в регуляцию экспрессии генов. [c.299]

    Особые РНК-полимеразы обеспечивают транскрипцию клеточных органелл эукариот — хлоропластов и митохондрий. В составе хлоропластной ДНК обнаружены гены, гомологичные генам, кодирующим а-, - и -субъединицы РНК-полимеразы Е. oli. Это, а также сходство нуклеотидной последовательности промоторов бактерий и хлоропластов свидетельствует о том, что РНК-полимераза хлоропластов должна быть сходна с РНК-полимеразой бактерий. РНК-полимеразы митохондрий состоят, по-видимому, всего из одной субъединицы, подобно РНК-полимеразам, кодируемым некоторыми бактериофагами, такими, как ТЗ и Т7. РНК-полимераза митохондрий дрожжей сходна с РНК-полнмеразами этих фагов по аминокислотной последовательности. Ген, кодирующий митохондриальную РНК-полимеразу, располагается в ядре. [c.136]

    Наиболее простой цикл репликации / транскрипции вирусной РНК — это когда с геномной РНК снимается комплементарная копия и эта копия, в свою очередь, служит матрицей для синтеза геномной РНК роль мРНК в образовании всех необходимых для размножения вируса белков выполняет родительская РНК. Если отвлечься от частностей, то этот принцип реализуется у фага Ор и у вируса полиомиелита. Однако стратегии этих вирусов различаются в одном существенном отношении. Фаг Ор размножается в клетках прокариот, поэтому его (+)РНК может функционировать как истинная полицистронная мРНК. Хозяин вируса полиомиелита — эукариотная клетка. Соответственно на (+)РНК этого вируса имеется единственная точка инициации трансляции, и все зрелые вирус-специфические белки возникают в результате ограниченного протеолиза единого полипротеина-предшественника. Как и у ДНК-содержащих вирусов, у вирусов с РНК-геномом разные вирус-специфические белки требуются в разных количествах и в разное время, а образование всех этих белков из единого предшественника затрудняет количественную и временную регуляцию их производства. Поэтому у РНК-содержащих вирусов эукариот возникли механизмы, обеспечивающие появление разных мРНК для [c.331]

    В геноме такого простого эукариота, как плесневый гриб Di tyoste-Иит, содержится в 11 раз больше ДНК, чем в геноме Е. соИ. У дрозофилы— высшего организма с наименьшим количеством ДНК—размер гаплоидного генома в 24 раза больше размера генома Е. соИ. Кодирующая емкость генома человека в 600 раз больше, чем у бактерии (табл. 1-3). Столь большое количество ДНК является одной из причин, затрудняющих изучение эукариотического генома. Другая трудность обусловлена тем, что процесс транскрипции генов у эукариот может сильно изменяться как во времени, так и в зависимости от условий окружающей среды. Следовательно, механизмы регуляции фенотипического выражения генов должны быть очень сложными. [c.296]

    Прежде чем обсуждать вопрос о дифференцировке сложных многоклеточных организмов, полезно рассмотреть более примитивные формы— одноклеточные и колониальные. В благоприятных условиях клетки бактерий и эукариот одинаковым образом вступают в фазу роста и деления (рис. 15-25), которая составляет основу экспоненциального роста [уравнение (6-60)]. Однако изменение внешних условий быстро меняет характер жизнедеятельности клеток. Так, недостаточность питательного субстрата не только уменьшает скорость роста, но и влияет на транскрипцию генов. У Е. oli это происходит в результате увели- [c.352]

    Описанный выше процесс транскрипции с одним основным ферментом - РНК-полимеразой - характерен для прокариот. У эукариот действуют три РНК-полимеразы I-PHK - полимераза находится в ядрышке, где она катализирует синтез рРНК, полимераза II в нуклеоплазме катализирует синтез мРНК, а полимераза III в нуклеоплазме катализирует синтез тРНК. [c.57]


Смотреть страницы где упоминается термин Транскрипция эукариот: [c.608]    [c.237]    [c.237]    [c.136]    [c.191]    [c.205]    [c.207]    [c.222]    [c.234]    [c.307]    [c.308]    [c.318]    [c.353]    [c.347]    [c.297]    [c.317]    [c.666]    [c.122]    [c.191]    [c.196]   
Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.195 , c.221 ]

Молекулярная биология (1990) -- [ c.195 , c.221 ]




ПОИСК







© 2025 chem21.info Реклама на сайте