Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Регуляция генома

    Опыты с искусственными генными конструкциями, составленными из отрезков ДНК разного происхождения, выявили существование особого цис-действующего элемента регуляции генов эукариот, получившего название усилителя (энхансера) или активатора транскрипции. Энхансеры представлены короткими последовательностями ДНК, состоящими из отдельных элементов (модулей), включающих десятки нуклеотидных пар. Модули могут представлять собой повторяющиеся единицы. Энхансер увеличивает эффективность транскрипции гена в десятки и сотни раз. Впервые энхансеры были обнаружены в составе геномов животных ДНК-содержащих вирусов ( У40 и полиомы), где они обеспечивают активную транскрипцию вирусных генов. Извлеченные из вирусных геномов и включенные в состав искусственных генетических конструкций, они резко усиливали экспрессию ряда клеточных генов. Позднее были обнаружены собственные энхансеры генов эукариотической клетки. Особенность энхансеров состоит в том, что они способны действовать на больших расстояниях (более чем 1000 п. н.) и вне зависимости от ориентации по отношению к направлению транскрипции гена. Оказалось, что энхансеры могут располагаться как на 5 -, так и на З -конце фрагмента ДНК, включающего ген, а также в составе интронов (рис. 112, а). Например, энхансеры были выявлены в районе 400 п. н. перед стартом транскрипции генов инсулина и химо-трипсина крысы. В случае гена алкогольдегидрогеназы дрозофилы энхансер был локализован за 2000 п. н. перед промотором. Энхансеры обнаружены на 3 -фланге гена, кодирующего полипептидный гормон-плацентарный лактоген человека, а также в составе интронов генов иммуноглобулинов и коллагена. [c.203]


    Одна из важных проблем генной инженерии - освоение фиксации азота. Трудность ее решения состоит в совершенно различной регуляции генов в бактериальных и растительных клетках. Процессы, протекающие в азот-фиксирующих бактериях и их симбионтах - растениях - анаэробные и аэробные соответственно. [c.63]

    Для дальнейшего продвижения необходимо сделать решительный поворот к биологии взаимодействий. Поэтому следует ориентироваться на уровень регуляции генной экспрессии. Параллельно классическому подходу, который был здесь описан (исследования и получение мутантов с измененным синтезом белка, см. 3.3), начинает очень быстро развиваться и другой подход — изучение на молекулярно-биологическом уровне, который кажется многообещающим для понимания регуляции этих явлений. [c.62]

    Изучение взаимодействий белков с нуклеиновыми кислотами как факторов, определяющих регуляцию генов. [c.88]

    Интересные и важные явления регуляции генов в целом не стали еще достоянием биофизики — лишь в отдельных случаях удалось построить убедительные физико-математические модели. [c.300]

    Внехромосомные экспрессирующие векторы млекопитающих используются для изучения функций и регуляции генов млекопитающих. Кроме того, с их помощью могут быть получены аутентичные рекомбинантные белки, которые потенциально могут использоваться в медицинских целях для лечения некоторых заболеваний человека. Уже сконструированные экспрессирующие векторы млекопитающих весьма многочисленны, но все они обладают сходными свойствами и похожи на другие эукариотические экспрессирующие векторы. [c.149]

    Протамины — положительно заряженные ядерные белки с молекулярной массой 10—12 kDa. Так же как и гистоны, они принимают участие в регуляции генной активности. Они примерно на 80% состоят из щелочных аминокислот, что дает им возможность взаимодействовать с нуклеиновыми кислотами посредством ионных связей. [c.48]

    Успехи в области изучения природы и биологических функций НК позволили 1В принципе разгадать молекулярные основы наследственности и изменчивости организмов. Сейчас биохимики и генетики на подходе к изучению внутриклеточных механизмов регуляции генной функции НК и морфогенетических функций клеточного ядра и хромосом. [c.7]

    Механизмы регуляции генной активности ДНК [c.15]

    Одной из актуальных задач современной биологии и, в частности, молекулярной биохимии и генетики является разгадка внутренних механизмов регуляции генной функции хромосом и других структур клетки, содержащих ДНК. Необходимо знание тонкой структуры хромосом и молекулярной организации работающих и неработающих в данный момент молекул ДНК. [c.15]

    Есть все основания предполагать, что в клетках растений и животных механизм регулирования генной активности лабильной части ДНК хроматина построен по описанному выше принципу Ф. Жакоба и Ж. Моно. Это молекулярный уровень регуляции генной активности ДНК. Он охватывает преимущественно сферу текущих метаболических процессов. [c.18]


    Для познания внутренних механизмов формообразования культурных растений и роли факторов внешней среды в формировании урожая необходимы в первую очередь детальные исследования природы и функции нуклеиновых кислот клеточного ядра, занимающего центральное положение в морфогенетических процессах организма. Особое внимание должно быть уделено изучению механизмов регуляции генной активности ДНК и морфогенетической функции клеточного ядра в связи с разработкой нижеследующих проблем растениеводства. [c.19]

    Приведенные примеры иллюстрируют огромные возможности технологии рекомбинантных ДНК в крупномасштабном синтезе ценных белковых материалов, которые было бы сложно или слишком дорого производить другими способами. Достигнутые успехи являются результатом объединенных усилий химиков, биологов и других ученых и служат наглядным примером полезной взаимосвязи разных дисциплин. Возможности технологии, базирующейся на рекомбинантной ДНК, однако, лишь только приоткрываются. Химически приготовленные последовательности ДНК могут использоваться для выявления генетических дефектов, возможно, свидетельствующих о специфической чувствительности к заболеванию. Можно даже предвидеть, что генетические болезни будут корректироваться путем замещения дефектных генов или введения генов, полученных методом генной инженерии. Не исключено, что самым важным вкладом технологии рекомбинантных ДНК станет расширение наших знаний о регуляции генов в клетке. [c.120]

    Регуляция генной активности [c.177]

    Репрессия (Repression) Один из двух альтернативных (наряду с индукцией) механизмов регуляции генов. Состоит в подавлении транскрипции или трансляции путем связывания белка-репрессора с оператором. [c.558]

    Гены гормонов роста уже рассматривались в разд. 25.2.2 и 25.2.3, а полемику вокруг бычьего соматотропина мы обсуждали в разд. 25.2.3. Сходные проблемы возникли и при введении в геном животных генов, обусловливающих синтез гормона роста человека. Трансгенные овцы, которые вырабатывали гормон роста человека в больших количествах, быстрее росли и набирали вес, однако, они больше болели, чаще погибали в молодом возрасте, а их самки были бесплодными. Трансгенные свиньи тоже очень эффективно наращивали мышечную массу, однако у них было отмечено еще больше побочных эффектов, чем у овец, включая артрит, язву желудка, болезни сердца и почек. До тех пор пока не будут найдены способы более точной регуляции генов, данный метод нельзя использовать в коммерческих целях. [c.237]

    Возможно, регуляция генов нитрогеназы (имеются предварительные данные о специфичности индукции й/у генов у разных форм растений) Леггемоглобин и кислородный барьер [c.178]

    Избранная по составу часть генного пика, составленная нормальными нуклеотидами в химическом состоянии, лишена мутагенной способности. Не имеют ее и генные нуклеотиды, так как относятся к реальному транс-хнмическому строению, располагающему сполна квантовой регуляцией генного поля. В нормальных химических нуклеотидах вне генного поля начало генной дискретности запрещено, так как в их структуре нет еще отделения от химического поля путем полного квантования последнего. [c.80]

    Наши современные представления о механизмах действия и регуляции генов, а также возможности частичного переноса ДНК от одной бактерии к другой позволяют предпринимать попытки к исправлению генетических дефектов за счет введения людям новых генов. На первый взгляд такая идея может показаться явно фантастичной, однако уже сейчас нам известны вирусы типа SV40, способные включаться в геном животных. Хотя вирус SV40 по своей природе онкогенен, тем не менее можно надеяться получить 8У40-подобные частицы ДНК с нормальными генами, извлеченными (возможно, с помощью других вирусов) из культивируемых клеток. Другая возможность решения этой проблемы состоит в извлечении генов из бактерий или же в введении генов, полученных химическим синтезом, в трансдуцирующие вирусы. [c.294]

    Билл Дж.У., Тейтем Э. (США) Открытие регуляции генами биохимических реакций [c.780]

    Соав и Саламини [158] выяснили, что накопление зеина у кукурузы контролируют регуляторные гены. На основе изучения коллекции мутантов с измененным содержанием лизина (ген опейк и 2) или с разной степенью накопления зеина они предлагают следующую схему каскадной регуляции ген Ог активирует ген Об, который соответствует структурному гену белка В32 это играет положительную роль в накоплении зеина. Такая модель каскадной регуляции основывается на концепции иерархии между регуляторными генами. [c.61]

    Недавно было установлено, что РНК может функционировать в качестве катализатора, подобно ферменту. Оказалось, что ферменты рибонуклеазы Р содержат 80 /о РНК, которая и выполняет основную функцию. В других случаях была обнаружена ферментативная активность РНК и в отсутствие белка. Не подлежит сомнению, что это связано со значительной коиформаци-ониой гибкостью и со сложной третичной структурой РНК. Надо думать, что эти, еще далеко недостаточно изученные, явления существенны для регуляции генов. Вполне возможно, что в клетках функционируют и другйе, еще не выявленные виды РНК. [c.231]

    Хромосомная ДНК, как правило, сверхспирализована. Как это было впервые показано в лаборатории Георгиева в 1982 г. (Лучник и Бакаев), сверхспирализация ДНК играет важную роль в биологической активности генома. Различные нуклеотидные последовательности в молекуле ДНК конкурируют за упругие витки и энергию сверхспирализации, поглощая их в конформационных переходах. Было установлено напряженное состояние ДНК в транскрипционно-активном хроматине вируса 8У40. Конформационные изменения, связанные с этими напряжениями, имеют прямое значение для регуляции генов. Сверхспирализация генома изменяется при дифференцировке, старении и элока-чественной трансформации клеток. [c.257]


    Негистоновые белки содержат не основные, а кислотные остатки. НГБ очень гетерогенны. Их м. м. варьируют от 10 000 до 150 000. Они разнообразны функционально. Свойства и строение НГБ изучены еще недостаточно, но несомненно их участие в регуляции генов. Способность НГБ стимулировать синтез РНК в бесклеточной системе зависит от состояния их фосфорилирования. Сформулирована гипотеза, согласно которой ген включается присоединением негистоиового белка к специфическому участку ДНК, репрессированному гистоном. НГБ фосфорилируются и приобретают отрпцательные заряды. Позтому они отталкивают также отрицательно заряженную ДНК и покидают ее вместе с положительно заряженными гистонами. Остается свободный участок ДНК, способный к транскрхшции. [c.297]

    Мы привели эти примеры для иллюстрации возможных отрицательных и положительных сторон влияния температуры на регуляцию генной активности. С одной стороны, легко видеть, как изменение температуры может подавлять нормальные регуляторные реакции, участвующие в механизмах контроля выражения генов например, оно может препятствовать включению или выключению определенного гена. С другой стороны, однако, создается возможность прямой температурной активации генов, кодирующих именно те белки или РНК, которые нужны при изменивщейся температуре. Например, если в новых температурных условиях необходимы новые классы ферментов, то соответствующие структурные гены могли бы активироваться в результате прямого термического воздействия. [c.228]

    Гистоны — ядерные белки, играющие важную роль в регуляции генной активности. Они найдены во всех эукариотических клетках и разделены на пять классов (A[, hj, h , h , h ), различающихся по молекулярной массе и аминокислотному составу. Молекулярная масса гистонов находится в интервале от 11 до 22 kDa, а различия в аминокислотном составе касаются лизина и аргинина, содержание которых варьирует от 11 до 29% и от 2 до 14% соответственно. [c.48]

    Исходный витамин D3 является регулятором образования гидроксилиро-ванной формы 25-(ОН) D3, ингибируя активность фермента 1-а-гидроксила-зы. Как уже было отмечено, биологические функции витамина D в основном связаны с действием его метаболитов. Физиологические концентрации кальция в крови поддерживаются системой, составной частью которой являются гидроксилированные формы D3. Идентифицирован механизм активации щелочной фосфатазы и кальций-зависимой АТФ-азы посредством метаболита витамина D3, а именно 1,25-(ОН)2 D3. Этот метаболит, локализованный в ядрах, принимает участие в регуляции генной активности. Гидроксилированные формы витамина D3 способствуют минерализации тканей, а также нормальному функционированию паращитовидных желез. [c.99]

    Ацетилирование и деацетилирование гастонов. Это важный фактор регуляции генной активности. Оказалось, что фермент гистон-ацетилаза ассоциирована с фактором ТАФ (гл. 28). Ацетилирование проходит по терминальному остатку лизина в полипептидной цепи гистона. В результате ацетилирования положительный заряд белка уменьшается и сродство гистона к отрицательно заряженной ДНК снижается. Это может привести к разрушению нуклеосом и деблокированию транскриптона. Деацетилирование гистонов приводит к противоположному эффекту. Специфические ацетилаза и деацети-лаза ассоциированы с белками инициации транскрипции. [c.473]

    При изучении природы и состояния НК в клеточных структурах в связи с проблемой регуляции генных и морфогенетических функций ДНК и РНК необходимы аналитическая и препа- [c.22]

    Дальнейшие пути воздействия инсулина на обмен веществ пока не известны Предполагают, что инсулин оказывает свое характерное действие в основном путем регуляции генной активности, ведущей к образованию ферментов, вызывающих определенные метаболические изменения. В результате инсулин существенно влияет ва несколько звеньев обмена веществ. Он способствует использованию глюкозы тканями, фосфорилированию ее с участием фермента глюкокиназы, благодаря чему уровень глюкозы в крови снижается. Наряду с агим он тормозит активность фермента глюко-зо-6-фосфатазы, защищая гексозофосфаты от дефосфорилирования. Повышение концентрации глюкозо-6-фосфата создает условия для активации гликолиза, апотоми-ческого цикла, а также биосинтеза полисахаридов. Инсулин активирует биосинтез фермента гликогенсинтетазы в печени, что также ускоряет биосинтез гликогена. [c.276]

    Синтез запасных белков имеет жесткую регуляцию гены экспрессируются только в единственной ткани (проламины злаков только в эндосперме зерна) и в течение короткого периода развития зерна. Исследование генов запасных белков показало общность их строения, что представляется логичным, так как они выполняют одинаковую функцию. Так, общим для подавляющего большинства генов запасных белков является отсутствие интронов. Кроме этого, у них на расстоянии 300 н. п. от точки начала транскрипции расположена специфическая последовательность в 25 н. п., названная эндосперм-боксом. Была определена функция эндосперм-бокса и показано, что именно от присутствия этой 25-нуклеотид-ной последовательности зависит тканеспецифичная экспрессия генов запасных белков в эндосперме зерна. Более того, продукт любого гена, перед которым находится последовательность эндосперм-бокса, синтезируется только в семенах или зернах, и представлялось логичным включение ее в состав векторов, содержащих модифицированную последовательность генов проламиновых белков с целью их последующего депонирования в семенах или зернах. [c.66]

    Ф и г. 240. Первоначальная модель оперона Жакоба и Моно, предложенная для объяснения регуляции генов la Е- all в 1961 г. [c.484]

    Синтезированная ДНК подвергается пострепликационной достройке — химической модификации под действием ферментов, использующих для метилирования некоторых остатков аденина и цитозина в качестве источника метильных групп 8-аденозилметионин. При этом образуются 6-ме-тиладенин и 5-метилцитозин (см. главу 8). Количество метилированных оснований невелико (1—8 %) и различается у разных видов организмов. Предполагают, что одной из возможных функций метилирования является регуляция генной активности, что позволяет объяснить сложный и загадочный механизм дифференциации клеток. [c.351]

    Способность /ас/ -мутантов к конститутивному выражению генов согласуется с поведением системы негативной регуляции. Ген lad кодирует белок-репрессор, способный выключать транскрипцию группы генов la ZYA. Мутация гена, приводящая к lad ", позволяет генам экспрессироваться конститутивно, поскольку репрессор становится неактивным. [c.179]

    Первичный транскрипт во всех случаях должен быть модифицирован посредством кэпирования, а обычно также и полиаденилирования. Из транскриптов прерывистых генов должны быть удалены интроны. Зрелая РНК должна быть экспортирована из ядра в цитоплазму. Пока еще невозможно провести различие между этими этапами с точки зрения их роли в регуляции генной экспрессии. Следовательно, вполне возможно, что регуляция путем отбора последовательностей на уровне ядерной РНК может происходить на любом из этих этапов или же сразу на всех. Какие-либо предположения о молекулярных механизмах (как качественных, так и количественных) регуляции генной экспрессии на уровне ядерной мРНК отсутствуют. [c.338]

    Такой метод рхкрьщает большие возможности для выключения определенных генов например, можно было бы исследовать функций регуляторйЬ гена, вводя в клетки его противоположно направленную (обращенную) копию. Если обращенный ген расположен так, что он будет находиться под контролем промотора, который сам является объектом регуляции, ген-мишень может [c.340]


Смотреть страницы где упоминается термин Регуляция генома: [c.622]    [c.287]    [c.428]    [c.128]    [c.171]    [c.72]    [c.406]    [c.280]    [c.275]    [c.168]   
Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.299 ]

Молекулярная биология (1990) -- [ c.299 ]




ПОИСК





Смотрите так же термины и статьи:

Регуляция



© 2025 chem21.info Реклама на сайте