Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Прокариоты вирусы

Рис. 14.5. Третичная структура ДНК прокариот а — линейная одыоцепочечная ДНК — бактериофаг ср х 174 и другие вирусы б — кольцевая одноцепочечная Д НК вирусов и митохондрий в — кольцевая двойная спираль Д НК Рис. 14.5. <a href="/info/97744">Третичная структура</a> ДНК <a href="/info/33282">прокариот</a> а — линейная одыоцепочечная ДНК — бактериофаг ср х 174 и другие вирусы б — <a href="/info/952023">кольцевая одноцепочечная</a> Д НК вирусов и митохондрий в — кольцевая двойная спираль Д НК

    Подобные парадоксы. можно разрешить, вспо.мнив, что и плазмиды и мобильные генетические элементы обладают сравнительной автономией от основной массы генетического материала, и поэто.му их можно рассматривать как своего рода организмы, обитающие в особой, генетической, среде. Таким образом, можно рассматривать функции плазмид, IS-элементов и транспозонов не с точки зрения преимуществ, которые они несут бактериям-хозяевам, а с точки зрения их самоподдержания в бактериальных популяциях, другими словами, можно считать автономные элементы прокариот эгоистической ДНК, обеспечивающей в первую очередь собственное размножение. В этом смысле. мобильные элементы и плазмиды непосредственно примыкают к вирусам, эгоистические тенденции которых очевидны. [c.122]

    Регуляция транскрипции ДНК-генома вирусов прокариот [c.290]

    Бактериальные ДНК — это высокополимерные соединения, состоящие из большого числа нуклеотидов — полинуклеотиды с молекулярным весом около 4 млн. Молекула ДНК представляет собой цепь нуклеотидов, где расположение их имеет определенную последовательность. В последовательности расположения азотистых оснований закодирована генетическая информация каждого вида. Нарушение этой последовательности возможно при естественных мутациях или же под влиянием мутагенных факторов. При этом микроорганизм приобретает или утрачивает какое-либо свойство. У него наследственно изменяются признаки, т. е. появляется новая форма микроорганизма. У всех микроорганизмов — прокариотов и эукариотов — носителями генетической информации являются нуклеиновые кислоты — ДНК и РНК. Лишь некоторые вирусы представляют собой исключение у них ДНК отсутствует, а наследственная информация записана или отражена только в РНК. [c.28]

    Разнообразие питательных веществ д средах для культивирования клеток млекопитающих служит предпосылкой к строгому соблюдению мер предосторожности в целях предотвращения загрязнения их вирусами, микоплазмами, бактериями, грибами В сравнительном плане клетки прокариот и эукариот заметно различаются по скорости роста Поэтому, например, животные и большинство растительных клеточных систем уступают в конкуренции микробным системам [c.143]

    Различия между вирусными геномами касаются не только формы молекул ДНК- У некоторых вирусов — пока это известно только для вирусов прокариот, т. е. для фагов,— в состав ДНК входят необычные и модифицированные основания. Классический пример ДНК Т-четных фагов вместо цитозина содержит 5-оксиметилцитозин (ОМЦ), причем к оксигруппе этого основания могут быть присоединены один или два остатка глюкозы (с образованием соответственно гликозил-ОМЦ и гентибиозил-ОМЦ). Геномы некоторых других фагов также содержат необычные основания. В большинстве случаев модифицированным оказывается пиримидин (тимин или цитозин). Ни одна из указанных модификаций не нарушает способности оснований вступать в стандартные уотсон-криковские взаимодействия. [c.262]


    З-Липотропин Белки прокариотов вирусов позвоночных человека [c.506]

    Важность обмена генетическим материалом для эволюции прокариот подтверждается тем, что многие бактерии имеют другой механиз.м обмена генами — естественную трансформацию. В ходе этого процесса бактерии активно поглощают ДНК, оказавшуюся в среде. Если поглощенная ДНК гомологична внутриклеточной, то воз.можна рекомбинация между ними. Для того чтобы повысить вероятность попадания в клетку именно гомологичной ДНК, некоторые бактерии амеют систему дискриминации, узнающую определенную последовательность ДНК, часто встречающуюся у этих бактерий, но редко у других, и позвачяющую транспорт в клетку лишь тех. молекул ДНК, которые отмечены такой последовательностью. Проникновение в клетку произвольной ДНК из среды потенциально опасно таки.м путе.м могли бы проникать патогенные агенты, например вирусы. Видимо, поэтому при естественной трансформации в клетку проникает лишь одна линейная цепь ДНК, а вторая в ходе транспорта деградирует. В таком виде ДНК относительно безвредна она рекомбинирует с клеточной ДНК при наличии гомологичных участков, а при отсутствии гомологии, как правило, де- [c.128]

    Двухнитевые РНК-геномы встречаются как у вирусов эукариот, так и у вирусов прокариот. Системы репликации / транскрипции у разных представителей этой группы вирусов могут заметно различаться. Рассмотрим, как эти процессы осуществляются у реовирусов (рис. 173). [c.328]

    Колебания нуклеотидного состава ДНК у эукариотных микроорганизмов (молярная доля, %) грибы — 26 — 70, водоросли — 37—68, простейшие — 22 — 68 у высших растений и животных — 35—45. Колебания в составе оснований ДНК вирусов приблизительно такие же, как у прокариот. [c.160]

    Молекулярные события, лежащие в основе репликации и транскрипции в клетках прокариот и эукариот, в своих главных чертах достаточно однотипны. Значительно более разнообразны варианты протекания этих процессов при воспроизводстве генетического материала вирусов. В данном параграфе рассматриваются некоторые наиболее существенные и широко представленные в мире вирусов особые пути протекания Матричного биосинтеза нуклеиновых кислот. Вследствие самой природы вирусов эти процессы протекают в клетках хозяина, инфицированных вирусами. [c.193]

    Питательные среды, рекомендуемые для культивирования представителей акариот, прокариот и эукариот принципиально отличаются между собой в том смысле, что для "выращивания" акариот необходимы живые клетки или ткани Так, вирусы гриппа накапливают в куриных эмбрионах, вирус табачной мозаики — на растениях табака, фаги — в клетках бактерий и т д [c.139]

    Вирусы прокариот, или бактериофаги, в большинстве своем имеют структурно-функциональное сходство В частности, они содержат лишь один какой-то тип нуклеиновой кислоты — ДНК или РНК в качестве генетического материала (у большинства фагов имеется двунитевая ДНК), нуклеиновая кислота упаковывается в головку фага, преобладающее большинство фагов имеет хвостовой отросток для прикрепления к поверхности реципиентной клетки, наконец, бактериофаги сходны по характеру индуцируемых ими событий, развивающихся в клетке после ее заражения — фаги являются облигатными паразитами [c.84]

    Все мельчайшие организмы, хотя они и не образуют естественной таксономической единицы, часто объединяют в одну группу под общим названием микроорганизмы или микробы. Эта группа включает в себя бактерий (прокариоты), вирусы, грибы и протоктисты. Такое объединение удобно в практических целях, поскольку методы, используемые для изучения этих организмов, как правило, схожи. Так, в частности, для их визуального наблюдения нужен микроскоп, а их культивирование следует проводить в асептических условиях. Наука, изучающая микроорганизмы, образует одну из ветвей биологии, называемую микробиологией. Микроорганизмы приобретают все большее значение в таких областях науки, как биохимия, генетика, агробиология и медицина кроме того, они составляют основу важного направления в промышленности, называемого биотехнологией. Этот вопрос более подробно рассматривается в гл. 12. Некоторые микроорганизмы, такие как бактерии и грибы, играют еще и важную экологическую роль в качестве редуцентов (разд. 10.3.2.). [c.19]

    Акариотическая наследственность. Этот тип наследственности свойствен прокариотам — вирусам и бактериям. [c.394]

    Характер образующихся транскриптов и способ регуляции транскрипции сильно зависят от того, имеем ли мы дело с вирусом прокариот или вирусо.м эукарнот. Дело в том, что в клетках прокариот возможна множественная внутренняя инициация трансляции на полицистронных матрицах, тогда как в эукариотных молекулах РНК обычно реализуется единственная точка инициации трансляции и эти молекулы, как правило, функционально моноцистронны. [c.290]

    Вирусные (—)РНК-геномы обычно кодируют несколько белков и часто вся генетическая информация содержится в единой молекуле. Если речь идет о геноме фага, то особых проблем с синтезом этих белков не возникает, так как в клетках прокариот каждый цистрон полицистронной матрицы может транслироваться независимо. Иначе обстоит дело у вирусов эукариот. В мРИК эукариот, как правило, функционирует только один иниципр щий триплет. Чтобы [c.317]

    Сначала рассмотрим системы, которые обходятся без образования субгеномных мРНК- Среди вирусов прокариот — это мелкие РНК-со-держащие фаги, например фаг [c.318]

    Наиболее простой цикл репликации / транскрипции вирусной РНК — это когда с геномной РНК снимается комплементарная копия и эта копия, в свою очередь, служит матрицей для синтеза геномной РНК роль мРНК в образовании всех необходимых для размножения вируса белков выполняет родительская РНК. Если отвлечься от частностей, то этот принцип реализуется у фага Ор и у вируса полиомиелита. Однако стратегии этих вирусов различаются в одном существенном отношении. Фаг Ор размножается в клетках прокариот, поэтому его (+)РНК может функционировать как истинная полицистронная мРНК. Хозяин вируса полиомиелита — эукариотная клетка. Соответственно на (+)РНК этого вируса имеется единственная точка инициации трансляции, и все зрелые вирус-специфические белки возникают в результате ограниченного протеолиза единого полипротеина-предшественника. Как и у ДНК-содержащих вирусов, у вирусов с РНК-геномом разные вирус-специфические белки требуются в разных количествах и в разное время, а образование всех этих белков из единого предшественника затрудняет количественную и временную регуляцию их производства. Поэтому у РНК-содержащих вирусов эукариот возникли механизмы, обеспечивающие появление разных мРНК для [c.331]


    У эукариот (все организмы, за исключением бактерий и синезеленых водорослей) также широко распространены М г.э., к-рые аналогичны М.г.э. прокариот по общему плану строения, способу транспозиции и генетич. эффекту. Элементы, подобньге 18 и гранспозонам, найдены у мн. эукариот (грибы, растения, млекопитающие и др.). Разл. эписомоподобные факторы обнаружены в ядре и цитоплазме дрожжей Умеренным фагам бактерий соответствуют онкогенные вирусы, в частности РНК-содержащие вирусы (ретровирусы) позвоночных. [c.80]

    Важное достижение М. б.-раскрытие на мол. уровне механизма мутацгш. Главную роль в нем играют выпадения, вставки и перемещения отрезков ДНК, замены пары нуклеотидов в функционально значимых отрезках генома. Определена важная роль мутаций в эволюции организмов (в СССР инициатором исследований мол. основ эволюции бьш А. Н. Белозерский). Раскрыты мол. основы таких генетич. процессов у прокариот (бактерии и синезеленые водоросли) и эукариот (все организмы, за исключением прокариот), как рекомбинация генетическая - обмен участками хромосом, приводящий к появлению бактерий (вирусов) с новым сочетанием генов. Достигнуты значит, успехи в изучении строения клеточного ядра, в т.ч. хромосом эукариот. Усовершенствование методов культивирования и гибридизации животных клеток. способствовало развитию генетики соматич. леток (клеток тела). Была развита идея о репликоне (элементарная генетич. структура, способная к репликации как единое целое), объясняющая важные аспекты регуляции репликации (Ф. Жакоб и С. Бреннер, 1963). Значит, успех М. 6.-первый КИМ. синтез геиа, к-рый осуществил в 1968 X. Корана. Данные о хим. природе и тонком строении генов способотвовали разработке методов их выделения (впервые осуществлено в 1969 Дж. Беквитом). [c.110]

    Простейшие организмы на Земле — это бактерии и сине-зеленые водоросли они составляют царство прокариот (Pro ariotae, Мопега) [1, 2]. Основным отличительным признаком прокариот является отсутствие у них отграниченного мембраной клеточного ядра. Клетки всех остальных организмов, называемых эукариотами, содержат ядра, отделенные от цитоплазмы мембраной. Некоторые биологи относят к живым организмам также и вирусы, однако эти поразительные объекты (дополнение 4-В) не могут считаться живыми в полном смысле этого слова, поскольку у них нет, как правило, собственного обмена веществ. [c.14]

    Синтез ДНК на матрице РНК. Выдающимся достижением биохимии нуклеиновых кислот является открытие в составе онковирусов (вирус Раушера и саркомы Рауса) фермента обратной транскриптазы, или ревертазы (РНК-зависимая ДНК-полимераза), катализирующего биосинтез молекулы ДНК на матрице РНК. Накоплены данные о том, что многие РНК-содержащие онкогенные вирусы, получившие наименование онкорнавирусов, содержат ревертазу в составе покровных белков. Фермент открыт также во многих клетках прокариотов и эукариотов, в частности [c.486]

    Так же как у прокариот, репликация состоит из трех основных стадий инициации, элонгации и терминации. Реп.1икация эукариотической ДНК происходит одновременно во многих областях хромосомы и, по-вндимому. инициируется на определенных последовательностях ДНК, которые хорошо идентифицированы у ряда вирусов. Инициация, как и у прокариот, требует участия специфических белков. [c.411]

    Генетический перенос у прокариот всегда осуществляется путем однонаправленного перехода ДНК из клетки в клетку, так что одна клетка служит донором, а другая — реципиентом ДНК. Этот переход может совершаться при конъюгации, включающей прямой контакт двух клеток, или в результате процессов, называемых трансдукцией и трансформацией. Трансдукционный перенос происходит при участии некоторых бактериальных вирусов (бактериофагов), способных захватывать фрагменты генома клетки-донора. Трансформационный перенос совершается путем поглощения клеткой-реципиентом свободных фрагментов ДНК, которые выходят из клетки-донора и попадают во внешнюю среду [56]. [c.26]

    Перенос рДНК в клетки прокариот или введение последовательностей клонированной ДНК в рецепторные эукариотические клетки (например, млекопитающих) с помощью фаговых векторов называют трансфекцией Альтернативный метод — использование вирусов эукариот, то есть когда эукариотическая клетка инфицируется — (заражается) вирусом В качестве векторов при этом чаще используют литические вирусы типа вируса полиомы и SV40, а также челночные векторы, сконструированные на основе ретровирусов и папилломавирусов [c.202]

    Микоплазмы представляют собой полиморфные микроорганизмы, прокариоты, отличающиеся от всех описанных выще бактерий отсутствием клеточной стенки и большим разнообразием форм в пределах не только одного вида, но и одного штамма встречаются одновременно шарообразные, эллипсовидные, дискообразные, чашевидные, булавовидные искривленные, нитевидные длинные до нескольких (2—5) мкм при толщине 150—200 нм (рис. 22). Тонкие нитевидные структуры могут образовывать формы ветвления. Наиболее крупные шарообразные формы достигают 10 мкм. А 1ельчайшие формы микоплазм получили название элементарных телец , размеры которых 125—220 нм, т. е. близки к размерам крупных вирусов. Для сравнения укажем, что палочкообразный вирус табачной мозаики имеет длину 350 нм [236], длина бактериофага молочнокислого стрептококка (Strepto o us la tis) 630—690 нм [241], Х-виру-са картофеля—1500—4290 нм. Вирус чумы рогатого скота 300—750 нм [241]. Из этого видно, что элементарные тельца микоплазм по размерам намного меньше перечисленных вирусов. Жизнеспособность элементарных телец микоплазм доказана. Поэтому и считается, что микоплазмы относятся к мельчайшим свободноживущим микроорганизмам. Микоплазмы не нуждаются в культивировании на живых клетках микроорганизмов подобно вирусам. Отсутствие клеточной оболочки делает их нечувствительными к пенициллину, подавляющему, как известно, синтез клеточных оболочек у бактерий. [c.65]

    Мы уже использовали термин хромосома по отношению к молекуле нуклеиновой кислоты, которая представляет собой хранилище генетической информа-Щ1И вируса, прокариота или эукариотической клетки. Однако первоначально слово хромосома (т. е. окрашенное тело ) использовалось в другом смысле, для обозначения густо окрашенных образований в эукариотических ядрах, которые можно было наблюдать в световой микроскоп после обработки клеток красителем. Эукариотические хромосомы, в изначальном смысле этого слова, выглядят как резко очерченные структуры только непосредственно до и во время митоза— процесса деления ядра в соматических клетках (рис. 27-22). В покоящихся, неде-лящихся эукариотических клетках хромо- [c.873]


Смотреть страницы где упоминается термин Прокариоты вирусы: [c.506]    [c.287]    [c.506]    [c.221]    [c.308]    [c.79]    [c.230]    [c.208]    [c.308]    [c.208]   
Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.290 , c.317 ]

Молекулярная биология (1990) -- [ c.290 , c.317 ]




ПОИСК







© 2025 chem21.info Реклама на сайте