Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплементарная ДНК-копия

Рис. 1-5. Репликация последовательности полинуклеотида (здесь молекулы РНК). На стадии 1 исходная молекула РНК служит матрицей для образования молекулы РНК с комплементарной последовательностью. На стадии 2 эта комплементарная молекула в свою очередь служит матрицей для образования молекулы РНК с исходной последовательностью. Поскольку каждая матрица способна произвести много комплементарных копий, Рис. 1-5. <a href="/info/1403415">Репликация последовательности</a> полинуклеотида (здесь молекулы РНК). На стадии 1 <a href="/info/1285543">исходная молекула</a> РНК <a href="/info/1435355">служит матрицей</a> для <a href="/info/290407">образования молекулы</a> РНК с <a href="/info/283297">комплементарной последовательностью</a>. На стадии 2 эта <a href="/info/1372934">комплементарная молекула</a> в свою очередь <a href="/info/1435355">служит матрицей</a> для <a href="/info/290407">образования молекулы</a> РНК с исходной последовательностью. Поскольку каждая матрица способна произвести много комплементарных копий,

    Первой ступенью в эволюции жизни на Земле была, вероятно, эволюция молекул. В водном растворе содержалось множество мелких молекул, которые беспорядочно образовывались под действием солнечного света, разрядов молний и других источников энергии и обладали способностью катализировать реакции, приводившие к синтезу копий самих себя. По-видимому, этот процесс проходил в две стадии во-первых, под влиянием каталитического действия (как на матрице) шло образование молекулы, комплементарной по структуре первоначальной молекуле, а затем эта вторая молекула служила матрицей для образования новой молекулы, которая была идентична первоначальной молекуле. Тот факт, что такой двухстадийный процесс репликации (или эквивалентный ему одностадийный процесс репликации молекулы, состоящей из двух комплементарных частей) осуществляется в настоящее время нуклеиновыми кислотами при репликации генов, позволяет предположить, что первыми самовоспроизводящимися молекулами на Земле были действительно молекулы нуклеиновой кислоты. Учитывая важную роль, которую белки играют в живых организмах, полагали, что именно они должны были быть первыми самоудваивающимися молекулами, однако существующие в этом отношении данные говорят в пользу нуклеиновых кислот. [c.465]

    Они располагаются не беспорядочно, а по принципу комплементарных (взаимно дополняющих) пар аденин против тимина, гуанин против цитозина. В результате в процессе клеточного деления возникают две новые двойные спирали, являющиеся точными копиями исходной каждая половинка разделившейся клетки получает свой набор ДНК, идентичный набору материнской клетки. [c.353]

    Наконец, олиго- или полинуклеотид может служить матрицей , которая определяет последовательность нуклеотидов в образующемся полимере и сама не входит в состав продукта реакции. При матричном синтезе продукт реакции является комплементарной копией полинуклеотидной цепи матрицы. Этот случай наблюдается в реакциях, катализируемых ДНК-полимеразой, РНК-поли-меразой и РНК-синтетазой. [c.99]

    Все изложенные соображения исходили из допущения матричного механизма синтеза ДНК, когда молекула затравки служит шаблоном, с которого в процессе движения фермента по длине нуклеотидной цепи снимается точная комплементарная копия. Но такое допущение еще нуждается в ряде прямых доказательств и дальнейших исследований. [c.307]


    Синтез одноцепочечной комплементарной копии РНК по матрице ДНК с помощью РНК-полимеразы. Новая цепь всегда синтезируется в направлении от 5 конца к 3.  [c.206]

    Кроме того, в вирусах, содержащих хромосомную РНК, происходит обратная транскрипция, т.е. биосинтез ДНК, последовательность которой комплементарна последовательности молекулы РНК, и репликация РНК -биосинтез копии хромосомной вирусной РНК, предшествующий образованию новых вирусных частиц. [c.54]

    Многие вирусы имеют геном в виде (—)нитн РНК. У некоторых таких вирусов геном представлен единой непрерывной молекулой, а у других он сегментирован, т. е. состоит из нескольких молекул. Общим свойством вирусов с (—)РНК-геномом является то, что в состав их вирусных частиц входит РНК-полимераза, способная копировать РНК-матрицу. Биологический смысл такой организации понятен. Поскольку, по определению, (—)РНК не может выполнять функции мРНК, для образования своих мРНК вирус должен внести в клетку не только геном, но и фермент, умеющий снимать с этого генома комплементарные копии. Другое общее свойство этих вирусов заключается в том, что матрицей для репликации / транскрипции является не свободная РНК, а вирусный рибонуклеопротеид (РНП) — молекула РНК, равномерно покрытая вирус-специфическим белком. [c.323]

    Репликация ДНК - биосинтез точной копии исходной молекулы ДНК, при этом информация, закодированная в последовательности оснований молекулы родительской ДНК, передается с максимальной точностью дочерней ДНК согласно правилам комплементарности. [c.54]

    Двойная мутация, конечно, маловероятна. Единичная замена звена меняет но при большом числе звеньев V это изменение очень мало. Относительное изменение скорости матричного синтеза при замене одного звена имеет порядок величины V . Допустим, что в результате замены селективная ценность увеличилась на соответствующую малую величину. Отбор требует времени. Если за время преимущественного выживания главных копий появится вторая мутация, возвращающая к прежнему значению, то новая главная копия не возникнет. Следовательно, величина Ж,- ве выражает истинную ценность информации в случае простой или комплементарной репродукции. [c.545]

    Располагая двумя парами зондов, можно установить генетический статус любого человека. Например, ДНК гетерозиготных носителей дает положительный ответ с обеими парами зондов, ДНК лиц, обладающих двумя копиями нормального гена, - только с тем набором зондов, который содержит нуклеотид, комплементарный нормальному сайту, и, наконец, ДНК индивидов с двумя измененными копиями гена — только с набором зондов, детектирующим мутантный сайт. Чтобы минимизировать необходимое для анализа количество исходной ДНК, перед гибридизацией участок ДНК-мишени, содержащий тестируемый сайт, амплифицируют с помощью ПЦР. [c.198]

    Эта гипотеза не была новой. В кругах генетиков теоретического склада, ломавших голову над удвоением гена, она была в ходу уже лет тридцать. Суть ее состояла в том, что для удвоения гена требуется образование комплементарной (негативной) копии его, форма которой относится к исходной (позитивной) поверхности, как ключ к замку. Затем эта комплементарная (негативная) копия должна была служить формой (матрицей) для синтеза новой позитивной копии. Однако нескольким генетикам идея комплементарного копирования не импонировала. Ведущим среди них был Г. И. Мёллер, находившийся под влиянием нескольких известных физиков-теоретиков, особенно Паскуаля Иордана, которые считали, что существуют силы притяжения подобного к подобному. Однако Полингу этот прямой механизм внушал отвращение его особенно возмущало предположение, будто эта идея находит подтверждение в квантовой механике. Перед самой войной он предложил Дельбрюку, от которого узнал про работы Иордана, написать совместно с ним для журнала Сайенс статью с категорическим утверждением, что, согласно квантовой механике, механизм удвоения гена связан с синтезом комплементарных копий. [c.75]

    Наиболее простой цикл репликации / транскрипции вирусной РНК — это когда с геномной РНК снимается комплементарная копия и эта копия, в свою очередь, служит матрицей для синтеза геномной РНК роль мРНК в образовании всех необходимых для размножения вируса белков выполняет родительская РНК. Если отвлечься от частностей, то этот принцип реализуется у фага Ор и у вируса полиомиелита. Однако стратегии этих вирусов различаются в одном существенном отношении. Фаг Ор размножается в клетках прокариот, поэтому его (+)РНК может функционировать как истинная полицистронная мРНК. Хозяин вируса полиомиелита — эукариотная клетка. Соответственно на (+)РНК этого вируса имеется единственная точка инициации трансляции, и все зрелые вирус-специфические белки возникают в результате ограниченного протеолиза единого полипротеина-предшественника. Как и у ДНК-содержащих вирусов, у вирусов с РНК-геномом разные вирус-специфические белки требуются в разных количествах и в разное время, а образование всех этих белков из единого предшественника затрудняет количественную и временную регуляцию их производства. Поэтому у РНК-содержащих вирусов эукариот возникли механизмы, обеспечивающие появление разных мРНК для [c.331]

    ТРАНСКРЙПТ м. Комплементарная копия РНК, синтезированная РНК-полимеразой на матрице ДНК. [c.445]

    ДНК-зонды применяют для поиска родственных генов в реакциях гибридизацрш с РНК — для выявления экспрессии данного гена в различных клетках. Для вьывления молекул нуклеиновых кислот, комплементарных всему зонду (или его участку), ДНК-зонды часто сочетают с методом гель-электрофореза, что позволяет получать информацию о размерах гибридизируемых молекул ДНК. Эффективное использование современных приборов, способных автоматически синтезировать любые нуклеотидные последовательности за короткий промежуток времени, дало возможность перестраивать гены, что представляет собой один из важных аспектов генной инженерии. Обмен генами, а также введение в клетку гена другого вида организма осуществляют посредством генетической рекомбинации in vitro. Этот подход был разработан на бактериях, в частности на Е. соИ. Он основан на важном свойстве ДНК — способности к перестройкам, изменяющим комбинацию генов в геноме и их экспрессию. Такая уникальная способность ДНК позволяет приспосабливаться данному виду к изменяющейся среде. Генетическую рекомбинацию подразделяют на два больших класса общую рекомбинацию и сайт-специфическую рекомбинацию. В процессе общей рекомбинации генетический обмен в ДНК происходит между гомологичными нуклеотидными последовательностями, например между двумя копиями одной и той же хромосомы в процессе мейоза (кроссинговера), или при скрещивании и перегруппировке генов у бактерий. [c.112]


    ДНК некоторых вирусов реплицируются в одном направлении по механизму катящегося кольца , вариант которого представлен на рис. 28-5. Вначале одна из двух цепей кольцевой родительской ДНК расщепляется ферментом. Затем к З -концу расщепленной цепи присоединяется несколько новых нуклеотидов. Рост новой цепи на кольцевой матрице осуществляется за счет постепенного вытеснения 5 -концевой части расщепленной цепи из катящейся кольцевой матрицы. По мере роста новой цепи вытесненный 5 -хвост становится линейной матрицей для синтеза новой комплементарной цепи. Этот синтез на линейной матрице продолжается до тех пор, пока не образуется дочерняя цепь ДНК, комплементарная одному обороту кольцевой матрицы. Двухцепочечный хвост отщепляется затем с помощью фермента, и на 5 -конце опять может начинаться процесс репликации. Таким путем с кольцевой матрицы может сходить множество комплементарных копий кольцевой ДНК. Механизм катящегося кольца испол ,зуется в ооцитах в процессе синтеза генов рРНК он позволяет получать большое число копий этих генов, расположенных в тандемной последовательности, что в свою очередь дает возможность синтезировать одновременно много рРНК. Этот механизм необходим ооцитам для того, чтобы производить много рибосом для быстрого синтеза клеточных белков в процессе ускоренно- [c.898]

    Первая контролируемая модификация белка была проведена в середине 60-х годов Кошландом и Бендером. Для замены гидроксильной группы на сульфгидрильную в активном центре протеазы — субтилизина они применили метод химической мо дификации. Однако, как выяснилось, такой тиолсубтилизин не сохраняет протеазную активность. Вообще говоря, методы химической модификации не только жестки и неспецифичны они плохи еще и тем, что с их помощью невозможно вызвать множественные желаемые изменения, особенно если модифицируемые аминокислотные остатки погружены в глубь третичной структуры белка. Для этого нужна белковая инженерия, основанная на генетической инженерии. Сегодня она осуществляется при помощи двух хорошо освоенных методов (гл. 7). Так, сайт-специфический мутагенез осуществляется следующим образом. Клонируют ген того белка, который интересует исследователя, и встраивают его в подх.одящий генетический носитель. Затем синтезируют олигонуклеотидную затравку с желаемой мутацией, последовательность которой из десяти — пятнадцати нуклеотидов в достаточной степени гомологична определенному участку природного гена и поэтому способна образовывать с ним гибридную структуру. Эта синтетическая затравка используется полимеразами для начала синтеза комплементарной копии вектора, которую затем отделяют от оригинала и используют для контролируемого синтеза мутантного белка. Альтернативный подход основан на расщеплении цепи, удалении подлежащего изменению сайта и замещении его синтетическим аналогом с желаемой последовательностью нуклеотидов. [c.183]

    Если в реакцию, катализируемую РНК-полимеразой, вводится только один нуклеозид-5 -трифосфат (из четырех), происходит синтез гомополимера, структура которого не является комплементарной копией добавленного полинуклеотида. При таком синтезе — синтезе повторением (reiteration)—полимеризация начинается на участке полинуклеотидной матрицы, содержащем последовательность по крайней мере трех остатков нуклеотидов, комплементарных добавленному единственному нуклеозидтрифосфату. Продукт, образовавшийся в результате такого частичного копирования последовательности матрицы, служит затравкой для дальнейшей ферментативной полимеризации, приводящей к гомополинуклеотиду. [c.99]

    Механизм действия репликаз мелких РНК-содержащих вирусов точно еще не изучен. Можно было бы предположить а priori, что в результате каждого акта репликации образуются полностью двухцепочечные молекулы. Такие двухцепочечные формы уже были обнаружены в клетках, инфицированных РНК они получили название репликативных форм (РФ). Кроме того, получены многочисленные данные о существовании таких молекул, в которых РНК лишь частично имеет двухцепочечный характер (репликативная промежуточная форма, РПФ). Были предложены схемы, объясняющие появление РПФ в результате одновременного образования многочислен--ных комплементарных копий, которые последовательно вытесняют друг друга с одной и той же матричной моле- кулы [206]. Схематическое изображение этого механизма [c.240]

    Как ясно из сказанного, об узнавании белком определенной последовательности нуклеотидов и из исследований Н. Г. Есиповой и В. Г. Туманяна, а также Томас [466], физико-химическое соответствие полинуклеотидных и полиаминокислотных последовательностей вполне реально. Очевидно, однако, что глобулярные белки уступают по своим матричным свойствам нуклеиновым кислотам вследствие своей упаковки (в общем случае вследствие своей сложной третичной структуры). Естественна мысль, что фибриллярные белки, не свернутые в глобулу полипептидные цепи, могут в принципе служить вполне хорошими матрицами (так думал Н. К. Кольцов ) как для саморепликации, так и для снятия с них полинуклеотидных комплементарных копий. Эта мысль развита в очень интересной статье Картера и Краута [371] (о возможности матричного воспроизведения на белках см. также [306]). [c.59]

    Аминокислотная последовательность, которая определяет данный белок, не строится непосредственно на ДНК. Синтез белка происходит в цитоплазме, и для переноса информации с ДНК к месту синтеза используются молекулы мРНК. Специфическая мРНК представляет собой точную комплементарную копию той части ДНК, которая должна быть транслирована в белок. В случае расщепленных генов интроны вырезаются , а в мРНК остаются только экзоны. [c.33]

    Фермент, который строит комплементарные копии ДНК-по-следовательности по матричной ДНК-последовательности. Этот набор ферментов участвует в репликащш. хромосом и в исправлении (репарации) любой ошибки в последовательности оснований, которая может появиться в процессе репликации. Домен [c.200]

    Первичным продуктом репликативного синтеза РНК являются комплементарные копии всех сегментов геномной РНК вируса гриппа [27]. Эти позитивные геномные копии отличаются от позитивных транскриптов (мРНК) структурой концевых последовательностей. В отличие от мРНК они не содержат кэпированных и метилированных затравочных последовательностей, и оба их конца строго комплементарны концам РНК-матриц этим они отличаются от укороченных и полиаденилированных транскриптов (рис. 24.7). Следовательно, позитивный одноцепочечный антигеном, синтезированный на первых стадиях репликации, содержит в комплементарной форме всю генетическую информацию, записанную в каждом сегменте геномной РНК. Эти антигеном-ные сегменты РНК служат в свою очередь матрицами для синте- [c.466]

    В основе одного из первых механизмов, предложенных для объяснения генетической рекомбинации, лежало предположение, что рекомбинация непосредственно связана с синтезом ДНК. Согласно этому механизму выбора копии , репликация протекает вдоль одной из цепей ДНК до какой-то случайной точки, в которой полимераза перескакивает на вторую из двух гомологичных хромосом и начинает копировать ее. Согласно этому механизму, вновь образованная молекула ДНК будет частично комплементарна одной родительской двухцепочечной молекуле ДНК, а частично — другой. Чтобы проверить правильность этого предположения, Меселсон и Вейгле [220] заражали Е. oli двумя штаммами фага содержащими ДНК, меченную стабильными изотопами соответственно углерода ( С) и азота ( N). Центрифугирование в градиенте плотности показало, что рекомбинантная ДНК содержала как С, так и N. Таким образом, стало ясно, что в рекомбинант- ную ДНК потомства включается ДНК обоих родителей. Этот результат не подтвердил гипотезы выбора копии и свидетельствовал в пользу механизма, предполагающего, что рекомбинация сопровождается расщеплением цепей. [c.282]

    Детальное исследование молекулярной организации генома высших эукариот, особенно млекопитающих, показало, что существенная часть генома, около 10 % общей массы ДНК, образовалась в результате интеграции в геном фрагментов ДНК, синтезирован-лых на РНК-матрицах в результате обратной транскрипции (рис. 118, а). Впервые подобный процесс был описан при исследовании ретровирусов, в геноме которых имеется ген, кодирующий обратную транскриптазу (ревертазу) (см. гл. ХИ1). В геноме млекопитающих, птиц, амфибий и насекомых обнаруживаются ретропо-зоны, представляющие собой внедрившиеся в геном ДНК-копии, синтезированные на разных типах клеточных РНК как на матрицах. Молекулярные механизмы ретропозиции не изучены, остается не установленным источник клеточной обратной транскриптазы. Не ясно, что служит затравкой для ревертазы возможно, это шпилька на З -конце РНК, образующаяся в результате комплементарных взаимодействий. Как будет видно, структура ретропозонов позволяет с уверенностью говорить об участии обратной транскрипции в процессе их образования. Таким образом, наряду с переносом информации от ДНК к РНК осуществляется и обратный процесс — возвращение ее в геном в виде ретропозонов. У млекопитающих ретропозоны составляют более 10 % ДНК следовательно, мощность встречного потока информации от РНК к ДНК может быть существенной, по крайней мере при оценке его во временном эволюционном масштабе. Различают разные типы ретропозонов. [c.222]

    Вернемся к модели Эйгена. Для того чтобы приблизить ее к природе, будем считать, что макромолекулы не автокоппруются, но синтезируют комплементарные цепи. Система описывается чередованием плюс - и минус -копий ( + г н —г)- Отбор происходит среди коллективов г, представляемых циклами [c.544]

    Полимеразная цепная реакция (ПЦР) - это эффективный способ получения in vitro большого числа копий специфических нуклеотидных последовательностей. Их амплификация - иногда в миллионы раз - осуществляется в ходе трехэтапного циклического процесса. Для ПЦР необходимы 1) два синтетических олигонуклеотидных праймера (длиной примерно по 20 нуклеотидов), комплементарные участкам ДНК из противоположных цепей, фланкирующим последовательность-мишень их 3 -гидроксильные концы после отжига с ДНК должны быть ориентированы навстречу друг другу 2) ДНК-мишень длиной от 100 до -35 ООО п. п. 3) термостабильная ДНК-по-лимераза, которая не теряет своей активности при температуре 95° и выше 4) четыре дезокси-рибонуклеотида. [c.94]


Смотреть страницы где упоминается термин Комплементарная ДНК-копия: [c.665]    [c.253]    [c.46]    [c.227]    [c.171]    [c.217]    [c.134]    [c.146]    [c.37]    [c.134]    [c.222]    [c.289]    [c.311]    [c.602]    [c.112]    [c.236]    [c.289]    [c.311]    [c.488]    [c.70]   
Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.329 , c.330 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.329 , c.330 ]




ПОИСК





Смотрите так же термины и статьи:

Копалы



© 2025 chem21.info Реклама на сайте