Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузия ламинарного диффузионного факела

    Длина диффузионного ламинарного факела зависит также от состава горючего газа, с которым связано теоретически необходимое количество воздуха Fo для горения 1 нм газа и теоретическая температура горения Тт Чем больше Fo, тем медленнее образуется стехиометрическая смесь. Чем выше Гт, тем ниже концентрация кислорода вблизи фронта пламени и тем медленнее будет происходить диффузия. Поэтому чем выше Fo и Гт> тем больше длина ламинарного диффузионного факела. [c.112]


    Для определения длины ламинарного диффузионного факела воспользуемся известным выражением для времени диффузии воздуха до оси горелки  [c.157]

    Следовательно, длина ламинарного диффузионного факела прямо пропорциональна скорости истечения, квадрату радиуса горелки (или квадрату ширины щели для щелевых горелок) и обратно пропорциональна коэффициенту диффузии. [c.157]

    К числу основных интегральных характеристик факела относится его длина. Величина ее сравнительно легко может быть определена из опыта, а также из расчета. Ряд работ, посвященных теоретическому и экспериментальному определению длины факела, упоминался ранее. Для диффузионного факела зависимость длины его от основных определяющих факторов может быть получена из соображений размерности. Для ламинарного диффузионного факела, развитие которого определяется только молекулярным смешением (т. е. для малых значений числа Рейнольдса), как и обычно для молекулярной диффузии, можно принять [c.23]

    В соответствии с ранее развитыми представлениями о диффузионном горении в ламинарном потоке переход от ламинарного режима к турбулентному для диффузионного факела может быть иллюстрирован качественным графиком, представленным на фиг. 10-2. Относительная длина диффузионного факела (отношение длины факела I к его ширине Ь) должно равняться отношению скорости потока к скорости диффузии, определяющей скорость смесеобразования Пока явление протекает в ламинарной области, [c.96]

    Принципиальной особенностью рассматриваемого принципа сжигания является крайне медленное смесеобразование, обусловленное только молекулярной диффузией, поэтому для ламинарного диффузионного горения характерна малая интенсивность процесса и растянутый факел. [c.112]

    Ламинарное диффузионное горение происходит при ламинарном режиме движения газа, вытекающего из горелки. Кислород, необходимый для горения, поступает из окружающей атмосферы и смещивается с горючим газом получаемая в результате молекулярной диффузии смесь при поджигании образует факел, который при круглых горелках принимает конусообразную форму, так как ло мере движения газ расходуется на горение и зона горения перемещается к оси струи, доходя до нее в верщине конуса (рис. 9-3). [c.155]

    Таким образом, можно представить, что ламинарное диффузионное-горение соверщается следующим образом. Газ, вытекая из горелки, молекулярной диффузией смешивается с кислородом воздуха, полученная горючая смесь при поджигании образует достаточно резко очерченный конусообразный светящийся факел. Фронт пламени устанавливается по поверхности, где смесь образуется в пропорции, теоретически необходимой для горения. В зону горения изнутри поступает газовое топливо в виде различных основных и промежуточных продуктов, а снаружи — кислород. Образующаяся горючая смесь воспламеняется за счет тепла,, распространяющегося от фронта пламени. Химическое превращение совершается в узкой светящейся зоне фронта горения в смеси, которая значительно разбавлена горячими продуктами сгорания и тем самым сильно нагрета, но в которой концентрации горючих элементов и окислителя малы. В таких условиях химическое реагирование протекает наиболее интенсивно. Толщина зоны горения мала — не превышает 1 мм. Образующиеся продукты сгорания диффундируют как в окружающее пространство, так и внутрь факела. Поверхность пламени отделяет окислительную область вне факела, в которой имеются кислород и продукты сгорания и нет горючего, от восстановительной области внутри факела, в которой нет кислорода, но есть газ и продукты сгорания. [c.156]


    С переходом от ламинарного режима течения потоков к турбулентному изменяется и относительная длина пламени, равная отношению осевой скорости потока к скорости диффузии. Если при ламинарном режиме движения относительная длина факела возрастает с увеличением нагрузки горелки, то при переходе к турбулентному режиму, в некоторых границах, она постоянна. Длина диффузионного факела в турбулентном потоке не зависит от его скорости, а зависит от химического состава газа, его физических свойств и особенностей перемешивания. Газы с высокой теплотой сгорания образуют более длинный факел. [c.62]

    Различают перемешивание двух видов. Первый происходит в результате молекулярной диффузии, второй — вследствие молярной диффузии, которая включает в себя и молекулярную как конечную стадию. Перемешивание в результате молекулярной диффузии наблюдается при ламинарном режиме течения смешивающихся потоков. Перемешивание турбулентной диффузией происходит при турбулентном режиме течения потоков. Соответственно этому образуются два резко отличающихся режима диффузионного горения ламинарный и турбулентный и два внешне очень различных вида диффузионных факелов ламинарный и турбулентный. [c.70]

    Примером горелки с предельно заторможенным смесеобразованием может служить так называемая диффузионная горелка, создающая параллельные потоки топливного газа и воздуха при одинаковых начальных скоростях и удельных весах (дат-Ут-—7 ). В этом случае, начальная стадия смесеобразования будет возникать только за счет медленной молекулярной диффузии и факел вытянется тем длиннее, чем больше окажется поступательная скорость потока в пределах ламинарного режима. [c.127]

    Таким образом, для данного горючего газа длина диффузионного ламинарного факела пропорциональна скорости истечения газовой струи и квадрату диаметра газового сопла и обратно пропорциональна коэффициенту молекулярной диффузии. [c.112]

    Диффузионное пламя, где неразбавленный поток топлива и весь воздух, необходимый для горения, смешиваются между собой путем диффузии через поверхность пламени. В зависимости от скорости подачи топлива и скорости его смешивания с воздухом диффузионное пламя может быть ламинарным или турбулентным. Практическими примерами диффузионного пламени являются пламя горелки Бунзена при закрытых воздушных окнах (рис. 14.2,а), пламя свечи, простой факел сжигаемого нефтезаводского газа и пламя, получаемое при капельном горении жидкого топлива. Длина диффузионного пламени, как следует из этих примеров, может составлять от нескольких сантиметров до многих метров. [c.555]

    В зависимости от организации диффузионных процессов в применяемых горелках представляется возможным изменять длину факела горения. Наибольшую длину факела можно получить при подаче газа и воздуха раздельными параллельными потоками при ламинарном режиме течения, когда смешение происходит только за счет молекулярной диффузии. Короткий факел можно получить путем организации усиленной турбулентной диффузии. [c.84]

    Структура ламинарного диффузионного факела представлена на рис. 48. Фронт пламени, отчетливо видимый в пространстве, делит факел па область, содержащую горючий газ, и область, содержащую окислитель. Вс.чедствие диффузии продуктов горения из фронта пламепи в факеле [c.111]

    Ламинарные режимы, применяемые в таких горелках, делают их приборами весьма умеренных форсирово К. Если по тем или иным причинам возникнет стремление к созданию диффузионных горелок малых форсировок с сильно укороченными факелами, то может быть с успехом применен принцип, вполне аналогичный принципу беспламенных горелок кинетического типа с заменой единичных газовых и воздушных каналов множеством параллельных канальцев. В этом случае, несмотря на столь вялое смесеобразование, какое возникает за счет молекулярной диффузии, диффузионные факелы с ничтожными поперечными размерами получат и ничтожную протяженность, хотя и заметно большую, чем при кинетическом принципе горения. [c.127]

    Краткий обзор исследований по ламинарным диффузионным пламена м. Разработанная Бурке и Шуманом [1] весьма упрощенная теория ламинарных диффузионных пламен очень хорошо описывает влияпие изменения различных переменных на размеры очень маленьких факелов и позволяет сравнитол1.но хорошо определять абсолютные размеры таких пламен. Такие пламена образуются при горении струй горючих газов в параллельном кольцевом потоке воздуха равной скорости. Пламена больших размеров образуются в основном при горении струй горючих газов в неподвюкпой воздушной среде [2, стр. 254, 288 3]. Для этих пламен теория Бурке и Шумана ие пригодна. Сравнительное нсследование ламинарных струй горючих газов, горящих в параллельно движущемся воздушном потоке и в неподвижной воздушной среде, пока отсутствует ). Введе гпе в теорию Бурке и Шумана полуэмпирических поправок позволило использовать ее длн определения высоты также и этих больших по размерам пламен. Эти поправки должны учитывать изменение коэффициента диффузии по температуре и накапливание продуктов сгорания в зоне малых скоростей, расположенной вокруг струи горючего газа. Точные уравнения, описывающие движение газа, протекание химических реакций (тепловыделение) и диффузию участвующих в реакции вещест и продуктов сгорания, насто,лько сложны, что маловероятно, чтобы интегрирование таких уравнений увенчалось успехом. Однако, несомненно, следует приветствовать работы по созданию теории, описывающей форму и обш,ую структуру ламинарного диффузионного пламени, которая основы-на гась бы на менее грубых, чем делалось до сих пор, упрош,ениях. [c.319]



Смотреть страницы где упоминается термин Диффузия ламинарного диффузионного факела: [c.331]    [c.6]   
Теория горения и топочные устройства (1976) -- [ c.157 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузионный факел



© 2025 chem21.info Реклама на сайте