Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярная диффузия смеси

    Ламинарное диффузионное горение происходит при ламинарном режиме движения газа, вытекающего из горелки. Кислород, необходимый для горения, поступает из окружающей атмосферы и смещивается с горючим газом получаемая в результате молекулярной диффузии смесь при поджигании образует факел, который при круглых горелках принимает конусообразную форму, так как ло мере движения газ расходуется на горение и зона горения перемещается к оси струи, доходя до нее в верщине конуса (рис. 9-3). [c.155]


    Скорость распространения пламени зависит также от состояния смеси перед воспламенением. Если смесь неподвижна или течет ламинарно, то процессы переноса во фронте пламени осуществляются за счет молекулярной диффузии и теплопроводности. Такое распространение пламени называют ламинарным. Если горючая смесь находится в турбулентном движении, то молекулярная диффузия начинает играть второстепенную роль — ведущее значение в распространении пламени приобретают процессы турбулентного смешения свежей смеси с продуктами сгорания [18]. Подобное горение называют турбулентным. [c.56]

    Газовая смесь входит в слой со скоростью ш, рассчитанной на все сечение, концентрация основного реагирующего компонента в ней С( . В плотной части слоя протекает реакция, и концентрация этого компонента в ней составляет С . В пузырях происходит обмен газа за счет молекулярной диффузии и наличия потока д, записанного выражением (1.16), и концентрация реагирующего компонента составляет Сз. Скорость газа в плотной части равна скорости в начале взвешивания Каждый пузырь имеет объем у, поверхность 5. Материальный баланс для одного пузыря записывается уравнением [c.117]

    В механике непрерывных сред точка в жидкости — это очень маленький объем в макроскопическом масштабе, но достаточно большой объем в микроскопическом масштабе, позволяющий оценивать локальные изменения температуры, скорости, концентрации и т. д. Применяя такой же подход к определению концентрации для наших систем, мы столкнемся с трудностями, поскольку, как было показано ранее, практически всегда смешение в полимерных системах осуществляется путем конвекции при отсутствии молекулярной диффузии. Согласно этому механизму процесс смешения — не что иное как объемное перераспределение одного компонента в другом. Из этого следует, что в любой точке системы согласно данному выше определению должен находиться один компонент либо дисперсионная среда, либо дисперсная фаза. Другими словами, если отсутствует молекулярная или турбулентная диффузия , то смесь в пределах точки будет полностью разделена на компоненты. Если же под концентрацией в точке понимать представительную концентрацию внутри небольшого локального объема, значительно превышающего объем предельной частицы или размеры сегрегированной области, но гораздо меньшего, чем объем исследуемой пробы (см. ниже), то можно провести анализ эффективности смешения. Разумеется, определенную таким образом концентрацию нельзя использовать для оценки, например, скорости реакции, протекающей по молекулярному механизму. В этом случае величины локальных объемов, связанных с такой точкой , гораздо меньше, чем в нашей точке . [c.185]


    Впервые диффузионный метод предложил Стефан для определения коэффициента молекулярной диффузии. Дести применил его для приготовления сильно разбавленных смесей с концентрацией 10" — 10 объемн.% и ниже. Готовить смесь такой концентрации обычными методами очень трудно. [c.270]

    С. Н. Шорин [85] сделал требующее экспериментальной проверки предположение, что ускорителями процесса воспламенения смеси могут быть молекулы Н2О и СО2, проникающие в исходную смесь в результате молекулярной диффузии и способные быстрее перегреваться, поглощая часть лучистой энергии, испускаемой зоной реакции. Основываясь на том, что зона реакции, несмотря на малую толщину, все же велика по сравнению с величиной [c.139]

    ЭТИХ потоков, по-видимому, и приводит в конце концов к турбулизации струи газа. В горящем факеле расстояние Я до начала турбулентного состояния несколько больще (сказывается влияние температуры), чем в холодной струе, при одинаковой в обоих случаях скоростях газа, причем горение здесь происходит по периферии газовой струи, т. е. там, где в результате молекулярной диффузии образуется стехиометрическая смесь следует отметить, что в этой части факел имеет форму равного пучка. [c.147]

    Первый случай. Смесь образуется за счет молекулярной диффузии. Время горения определяется временем молекулярного смешения, которое в этом случае равно.  [c.97]

    Одновременно с вовлечением в движение струи воздуха из окружающего пространства происходит молекулярная диффузия газа в воздух и воздуха в газ как в радиальном, так и в осевом направлениях. Внешние границы струи, образованные прямыми ЛИНИЯМ , являются границами проникновения газа внутренняя граница газового ядра является границей проникновения воздуха. Между этими поверхностями, близкими 1С коническим, движется смесь газа и воздуха с концентрацией, снижающейся от 100% до нуля. В пределах этой смеси можно отметить зону, где газовоздушная смесь, обладающая избытком газа, лежит выше верхнего концентрационного предела воспламенения, и зону смеси с содержанием газа менее нижнего предела воспламенения. Между этими зонами смесь способна воспламеняться, состав ее плавно меняется от нижнего до верхнего пределов воспламенения. Особое значение имеет поверхность стехиометриче-ской смеси, 1а которой количество воздуха соответствует теоретически необходимому. [c.131]

    Таким образом, можно представить, что ламинарное диффузионное-горение соверщается следующим образом. Газ, вытекая из горелки, молекулярной диффузией смешивается с кислородом воздуха, полученная горючая смесь при поджигании образует достаточно резко очерченный конусообразный светящийся факел. Фронт пламени устанавливается по поверхности, где смесь образуется в пропорции, теоретически необходимой для горения. В зону горения изнутри поступает газовое топливо в виде различных основных и промежуточных продуктов, а снаружи — кислород. Образующаяся горючая смесь воспламеняется за счет тепла,, распространяющегося от фронта пламени. Химическое превращение совершается в узкой светящейся зоне фронта горения в смеси, которая значительно разбавлена горячими продуктами сгорания и тем самым сильно нагрета, но в которой концентрации горючих элементов и окислителя малы. В таких условиях химическое реагирование протекает наиболее интенсивно. Толщина зоны горения мала — не превышает 1 мм. Образующиеся продукты сгорания диффундируют как в окружающее пространство, так и внутрь факела. Поверхность пламени отделяет окислительную область вне факела, в которой имеются кислород и продукты сгорания и нет горючего, от восстановительной области внутри факела, в которой нет кислорода, но есть газ и продукты сгорания. [c.156]

    Скорость сгорания топлива сильно возрастает, если горючая смесь находится в интенсивно вихревом (турбулентном) движении. Соответственно интенсивность турбулентного теплообмена может быть значительно выше, чем при молекулярной диффузии. [c.301]

    Молекулярная диффузия и разделение смеси газов. Если через пористый фильтр пропустить смесь газов, отличающихся друг от друга своей молекулярной массой, а значит, и тепловыми скоростями молекул, то при молекулярной диффузии поток лёгкой компоненты будет больше, чем поток тяжёлой [19-21]. На выходе из пористого фильтра состав смеси изменится концентрация лёгкой компоненты в смеси будет больше, чем у входа. Коэффициент разделения смеси можно вычислить, рассматривая два объёма, разделённых пористой перегородкой О площадью 6  [c.139]

    В ламинарном газовом потоке скорости газов. малы, а горючая смесь образуется в результате молекулярной диффузии. Скорость горения в этом случае зависит от скорости образования горючей смеси. Турбулентное пламя образуется при увеличении скорости распространения пламени, когда нарушается ламинарность его движения. В турбулентном пламени завихрение газовых струй улучшает перемешивание реагирующих газов, так как увеличивается поверхность, через которую происходит молекулярная диффузия. [c.288]


    При охлаждении паро-газовой смеси, турбулентно движущейся вдоль более холодной поверхности, происходит молекулярная диффузия пара к этой поверхности через прилегающий к ней пограничный слой газа, а затем конденсация пара на поверхности одновременно паро-газовая смесь охлаждается за счет молекулярной теплопроводности. Выравнивание концентрации и температуры в турбулентном ядре потока происходит за счет [c.141]

    При охлаждении паро-газовой смеси, турбулентно движущейся вдоль более холодной поверхности, происходит молекулярная диффузия пара к этой поверхности через прилегающий к ней пограничный слой газа, а затем конденсация пара на поверхности (массоотдача). Одновременно паро-газовая смесь охлаждается за счет молекулярной теплопроводности (теплоотдача). Выравнивание концентрации и температуры в турбулентном ядре потока происходит вследствие турбулентного перемешивания. Таким образом, в рассматриваемом случае процессы осуществляются как за счет турбулентной, так и молекулярной диффузии и теплопроводности. [c.149]

    Уравнения (13) и (14) учитывают перенос вещества из элементарного объема неподвижной жидкости только за счет молекулярной диффузии, что далеко не соответствует реальным объектам—реакционно-массообменным аппаратам, где одновременно протекают диффузия, конвекция и химическая реакция. Анализ таких сложных процессов проводят [116] с помощью наиболее простой и наглядной пленочной модели. Предположим, что для рассматриваемого случая десорбции имеются две стадии — конвективно-диффузионный перенос веществ В и О из жидкости к границе раздела фаз и аналогичный процесс переноса от границы раздела фаз в газовую смесь, содержащую в общем случае какой-то инертный газ. Распределение концентраций в таком процессе для компонента В показано на рис. 2. [c.22]

    Диффузия в пористых катализаторах. Перепое компонентов реакционной смеси внутри гранулы катализатора осуществляется главным образом посредством диффузии. Интенсивность диффузии внутри гранулы зависит от фазового состояния и состава реакционной смеси, физических свойств компонентов, составляющих реакционную смесь, строения пористой структуры катализатора, температуры и давления каталитического процесса. При изучении диффузии внутри пористого катализатора прежде всего необ.хо-димо учитывать влияние строения пористой структуры на интенсивность диффузии. Пористость катализатора, размер пор, их извилистость, форма и взаимное расположение — основные свойства пористой структуры, оказывающие влияние на интенсивность диффузии компонентов реакционной смеси внутри гранулы катализатора. Пористость катализатора, равная объему свободного пространства в единице объема пористой массы, определяет долю сечения гранулы катализатора, доступную для диффузии. Извилистость пор характеризует увеличение среднего пути диффузии, относительно длины в направлении, перпендикулярном внешней поверхности гранулы. Размер пор определяет механизм диффузии реагентов внутри пористой массы катализатора, если реакционная смесь является газофазной. При диффузии газов в порах молекулы каждого компонента реакционной смеси испытывают сопротивление своему движению в результате столкновения с молекулами других компонентов и с поверхностью пор. Если размер поры значительно превосходит длину среднего свободного пробега молекул газа, то число взаимных столкновений между молекулами будет значительно больше числа столкновений молекул с поверхностью поры. Перенос вещества будет протекать по закону молекулярной диффузии в свободном пространстве. Если размер пор значительно меньше длины среднего свободного пробега молекул газа, то молекулы сталкиваются преимущественно со стенками пор и каждая молекула двигается независимо от остальных. Такая диффузия называется кнудсеновской. В случае, когда длина среднего свободного пробега молекул газа соизмерима с размером пор, имеет место переходный режим диффузии. На режим диффузии жидкостей размер пор не оказывает влияния пока не становится соизмеримым с размером молекул жидкости. [c.60]

    При анализе подобия протекания процессов в камере сгорания ГТД можно исходить из схемы на рис. 1. Зона реакции формируется отчасти внутри границ раздела между отдельными потоками воздуха, подводимого через фронтовое устройство и боковые отверстия, и потоком первичной смеси, получающейся в результате испарения и газификации топлива в продуктах горения циркуляционной зоны. Газифицированное топливо и кислород воздуха в условиях автомодельности течений притекают в эту зону под влиянием турбулентных пульсаций. Внутри боковых границ зоны турбулентного смешения происходит дробление горючего и воздуха на отдельные малые объемы, которые теряют свою индивидуальность вследствие молекулярной диффузии, в особенности в последние моменты своего индивидуального существования, когда масштаб дробления становится особенно малым. В итоге внутри границ раздела образуется горючая смесь (стехиометрического состава), которая сгорает на некотором протяжении, определяемом скоростью молекулярной диффузии и скоростью химических реакций, с одной стороны, и скоростью движения смеси — с другой. Турбулентные моли воздуха, сносимые потоком первичной смеси с радиальных струй воздуха сгорают также по микродиффузионной схеме внутри основного потока. Таким образом, зона реакции формируется как на границе раздела потоков воздуха и первичной смеси, так и внутри потока [c.216]

    Под массопередачей понимают переход компонента смеси из области высокой концентрации в область более низкой концентрации. Например, если открытую пробирку с небольшим количеством воды на дне поместить в пространство с относительно сухим воздухом, то пары воды будут диффундировать через слой воздуха в пробирке. Будет происходить перенос воды из области, где ее концентрация высока (у свободной поверхности жидкости), в область, где ее концентрация низка (в окружающей атмосфере). Если газовая смесь в пробирке неподвижна, массопередача происходит путем молекулярной диффузии. Если же слои газа в пробирке перемешиваются механической мешалкой или вследствие разности плотностей, то массопередача происходит главным образом путем вынужденной или естественной конвекции. Эти способы переноса массы аналогичны переносу тепла теплопроводностью и конвекцией в массопередаче нет аналога лучеиспусканию. [c.441]

    Неоднократно делались попытки связать состав газов и их возраст какими-либо закономерностями. Самая идея подобного взаимоотношения правильна, потому чтд деградация молекул продолжается в течение всей геохимической истории нефти, хотя и замедляется в конце процесса. Теоретически можно ожидать, что древние газы должны содержать больше ближайших гомологов метана, чем газы начальных этапов превращения. Можно также ожидать, что переход азотистых соединений в азот должен относительно увеличить концентрацию азота в древних газах. Возможно, что подобное положение вещей и удалось бы показать анализами газа, однако на пути решения подобной задачи появляется множество затруднений во-первых, газ представляет собой подвижную систему углеводородов, смесь которых неизбежно должна менять свой состав в зависимости от давления и температуры, особенно при наличии такого растворителя, как нефть во-вторых, миграция газа связана с своеобразным хроматографическим разделением компонентов вследствие различий в молекулярном весе и вязкости компонентов в-третьих, в каждом месторождении можно предполагать частичное удаление наиболее легких компонентов (метана) в силу диффузии и подобных явлений, наконец, нельзя не считаться с тем, что нет практической возможности принимать известным количественное соотношение между газообразными и жидкими углеводородами нефти. Все это приводит к тому, что всякая проба газа, отобранная для исследования, будет случайной, т. е. обособленной от той среды, из которой она взята. Тем не менее изучение состава природных газов иногда позволяет наметить кое-какие закономерности, отражающие действительное положение дела. [c.77]

    Для оценки скорости диффузии обычно пользуются коэффициентом молекулярной диффузии. В связи с тем, что молекулярная теория жидкостей разработана относительно слабо, то невозможно оценивать коэффициент диффузии в жидкостях с такой же точностью, как, например, для газов. Учитывая то, что остатки являются многокомпонентными смесями высокомолекулярных соединений, диффузионные явления в которых осложнены стерическими факторами и межмолекулярными взаимодействиями, обычно прибегают к различного рода упрощениям, в частности условно относят рассматриваемую смесь к двухкомпонентной. Например, дисперсную фазу относят к компоненту 1, а дисперсионную среду, в которой диффундирует дисперсная фаза, к компоненту 2. Для количественной оценки значений коэффициентов молекулярной диффузии в растворах могут быть использованы эмпирические корреляции, которые достаточно подробно рассмотрены Саттерфилдом [27]. Так, для оценки коэффициента диффузии В молекул соединений с относительно малыми размерами широко используется соотношение Вильке и Чанга  [c.29]

    Каскад реакторов полного перемешивания, равнозначный по выходу определенному реальному реактору, будем называть заменяющим каскадом (рис. УПЬЗЗ). Расчет реактора можно свести к расчету заменяющего его каскада, если удастся определить число ступеней. Для этого нужно количественно описать отклонения от полного вытеснения в реальном реакторе. Такие отклонения обусловлены 1) неравномерным распределением скорости потока в осевом (продольном) направлении 2) флуктуациями скорости и завихрениями 3) молекулярной диффузией. Это приводит к тому, что продукты реакции перемещаются из конечной части аппарата в направлении к входу, исходные же вещества переносятся в обратном направлении. На конечном участке аппарата они разбавляют смесь пpoдyкtoв и снижают выход реакции. Следовательно, в общем случае указанные эффекты оказывают неблагоприятное влияние на работу реактора. [c.322]

    Газовая смесь течет по каналам между гранулами катализатора. При этом происходит тепло- и массоперенос между частицами и потоком. В ядре потока массо- и теплообмен осуществляются, главным образом, за счет конвекции, так как поток обычно турбулентный.Вблизи поверхности имеется ламинарный пограничный слой, скорость газа в котором падает до нуля у поверхности гранулы. Транспорт реагентов и продуктов реакции через него в направлении, нохмальном к поверхности, осуществляется путем молекулярной диффузии, а тепла -теплопроводностью. Перенос тепла может происходить также посредством теплопроводности от частицу к частице через поверхность контакта и излучением меаду частшщми. [c.60]

    В последние годы опублпкованы отечественные и зарубежные работы [1], в которых делается попытка теоретически решить эту задачу на основе представлений о диффузионном механизме горения, аналогичном горению в ламинарном потоке, но с той разницей, что перемешивание окислителя с горючим протекает не со скоростью молекулярной диффузии, а более интенсивно — со скоростью турбулентной диффузии. Предполагается, что в результате взаимной диффузии горючего и окислителя в пограничном слое на некотором расстоянии от стенки образуется некая поверхность ну.тевой толщины, на которой устанавливается стехиометрическое соотношение горючего и окислителя (а = 1). На этой поверхности — во фронте пламени происходит мгновенное сгорание топлива и достигается температура, соответствующая равновесному составу продуктов горения. Из фронта пламени продукты горения диффундируют в обе стороны, в результате чего выше фронта пламени находится смесь газов, состоящая из продуктов горения и окислителя, ниже фронта пламени — из горючего и продуктов горения (концентрация окислителя равна нулю). В каждом сечении канала поле температур соответствует распределению концентраций продуктов горения в газовом потоке. Параметры пограничного слоя — ноля температур, скоростей и концентраций — находятся нз решения интегральных уравнений движения, энергии, неразрывности и состояния при ряде упрощающих допущений (Рг = Ье = 1, постоянство энтальпий и концентраций на поверхности стенки). [c.30]

    Основой процесса горения топлива в камерной топке являются химические реакции его горючих элементов с кислородом, причем эти реакции протекают в потоке и в сложных условиях в сочетании с рядом физических процессов, накладывающихся на основной химический процесс. Такими процессами являются движение подаваемых в топочную камеру составляющих горючую смесь газовых и твердых или жидких диопергир ованных веществ в системе струй и потоков в ограниченном Пространстве топочной камеры с развитием вторичных, в том числе и вихревых, течений, в совокупности образующих сложную структуру аэродинамики топки конвективный перенос, турбулентная и молекулярная диффузия исходных веществ и продуктов реакции в газовом потоке, а при сжигаиии твердых и жидких топлив также перенос газовых реагентов к диспергированным частицам передача тепла, выделяющегося в ходе химических реакций, в газовом потоке и от газовой среды к экранным поверхностям, размещаемым в топочной камере. [c.4]

    Гетерогенно-каталитические реакции проводятся в условиях интенсивного движения реакционной смеси относительно гранул катализатора. Вдали от наружной поверхности катализатора — в ядре потока — скорость движения реакционной смеси достаточно велика, и обычно жидкость (газ) движется в турбулентном режиме. Благодаря интенсивному тепло- и массопереносу выравнивание концентрации и температуры происходит на расстояниях, сравнимых с размером гранулы кaтaJшзaтopa. В вязком подслое реакционная смесь движется в ламинарном режиме, и массоперенос осуществляется путем молекулярной диффузии. Толщина [c.566]

    Возьмем условно замкнутый объем (например, помещение, топку, газоход и т. п.), заполненный воздухом, и будем постепенно из одной точки подавать в него горючий газ. Смешение газа с воздухом будет происходить путем молекулярной диффузии, т. е. непрерывного и хаотического движения молекул газа и воздуха, стремящихся равномерно распределиться по всему объему. Ускорить процесс смешения можнв искусственно, например путем образования движущихся потоков вследствие разрежения, создаваемого в топке и газоходах дымовой трубой или дымососом. На первый взгляд кажется, что чем больше газа окажется в заданном объеме, те.м вероятнее в нем возможность взрыва и тем опаснее его последствия. В действительности не любая смесь горючего газа с воздухом, даже тщательно перемешанная, взрывоопасна. Газовоздушная смесь взрывоопасна только в том случае, если содержание в ней газа находится в определенных пределах, имеющих свои значения для каждого вида газа. [c.20]

    Многие процессы простого смешения происходят самопроизвольно, естественным путем. Так, например, после удаления перегородки, разделяющей два газа, начнется процесс их взаимной диффузии, в результате которого образуется однородная смесь. Подобным же образом смешиваются две взаимосмеши-вающиеся жидкости, хотя в этом случае требуется гораздо больший промежуток времени. Механизм подобных естественных процессов основан на явлении молекулярной диффузии. Однако этот механизм преобладает только тогда, когда размер предельных частиц соизмерим с размерами молекул. В случае высокополимеров скорость диффузии резко снижается и соответственно уменьшается ее роль в процессе смешения. [c.324]

    В качестве примера на рис. 6.9, а представлена интерференционная картина при седиментации раствора смеси двух компонентов, значительно различающихся по молекулярным весам. Смесь седиментирует, образуя два пика, из которых первый (высоко.молекуляриый компонент) практически остается прямоугольным, тогда как второй (более низкомолекулярная часть), только что оторвавшийся от мениска, значительно более расширен благодаря диффузии (концентрация низкомолекулярного компонента в смеси в несколько раз больше, чем высокомолекулярного).  [c.433]

    Молекулярная диффузия может происходить под воздействием концентрационных, температурных градиентов или градиентов давления, или же в том случае, когда на смесь накладывается направленный внешний электрический или иной потенциал. В совершенно неподвижной газовой или жидкостной смеси неизбежно возникнет градиент концентрации в направлении заданного температурного градиента ( эффект Соре ). Например, в двух соединенных между собой колбах, содержащих смесь, состоящую из 35,6 % водорода и 64,4 % неона, установится разница концентраций, равная 6,9 %, если одну колбу поддерживать при 290,4 К, а другую—при 90,2 К. И наоборот, температурный градиент может вызвать диффузию какого-то вида молекул в смеси даже при отсутствии градиента концентрации. Этот процесс, известный под названием гтрмодиффузии, применялся для разделения урана и других изотопов. Сообщалось [96] о том, что градиент вязкостных касательных напряжений в жидкой смеси, соприкасающейся с вращающимся цилиндром, создает стационарный концентрационный градиент, т. е. наблюдаемое явление в какой-то мере аналогично э( екту Соре. [c.21]

    Поскольку масляное сырье представляет собой многокомпонентную смесь кристаллизующихся углеводородов, растворенных в кизкозастывающихся компонентах, при депарафинизации в основном будет иметь место совместная, то есть многокомпонентная, кристаллизация с образованием различных более сложных смешанных форм кристаллической структуры. При совместной кристаллизации из углеводородных сред в первую очередь выделяются кристаллы наиболее высокоплавких углеводородов, на кристалли — меской решетке которых последовательно кристаллизуются углеводороды с более низкими температурами плавления. При этом (рорма кристаллов остается ромбической, а их размер зависит от молекулярной массы и химической природы кристаллизующихся углеводородов. Так, с повышением молекулярной массы и температуры кипения н-алканов кристаллическая структура их становится все более мелкой. Обусловливается это тем, что с повышением молекулярной массы уменьшается подвижность молекул парафина. Это затрудняет их диффузию к ранее возникшим центрам кристаллизации и вызывает образование новых дополнительных кристал — Аических зародышей малых размеров. [c.254]

    Если линейный размер структурных элементов пористого тела настолько мал, что становится сопоставимым с длиной свободного пробега молекул (например, при кнудсеновской диффузии молекул газа в порах катализатора), то целесообразно применение так называемой модели пылевидного газа [55, 56], представляющей элементы твердого скелета пористого тела в виде тяжелых неподвижных макромолекул, способных рассеивать, адсорбировать и десорбировать молекулы газовой смеси. Иными словами, твердое вещество пористого материала формально рассматривается как равноправный компонент газовой смеси (пылевидный компонент) со своей концентрацией, молекулярной массой, парциальным давлением и т. п. Газовую смесь вместе с пылевидным компонентом называют псевдогазовой. В рамках модели пылевидного газа в принципе удается преодолеть основные трудности квази- [c.141]

    Количественное определение пафтенов в кероснновых фракциях представляет собой более сложную задачу. Выделение нафтено даже из легких фракций пефти в чистом виде и. ш в концентрированном состоянии представляет собой чрезвычайно трудную задачу. 1з нафтено-парафиновой части нефтяной фракции легко можно выделить алканы с прямой цепью, а оставшуюся смесь изо-иарафинов и нафтенов разделить количественно очень трудно вследствие близости физико-химических свойств этих углеводородов. В настоящее время эта задача может быть частично решена с помощью термической диффузии или с помощью адсорбционного разделения на молекулярных ситах 13 в паровой фазе. [c.69]

    Третий поток циркулирующего газа проходит в первый горячий сепаратор, предупреждая тем самым шламоосаждение. В реакторном блоке жидкой фазы решающее значение имеют условия контакта сырья, водорода и катализатора. Большую роль играет молекулярный вес сырья, так как растворимость водорода в тяжелых нефтепродуктах значительно меньше, чем в легких, а скорость реакции гидрирования определяется концентрацией водорода в том слое сырья, который находится в непосредственном контакте с катализатором. В реактор жидкой фазы поступает снизу вверх смесь сырья, суспензии катализатора и водорода последний барботи-рует жидкость, заполняющую реактор, способствуя равномерному распределению катализаторной взвеси в реакционном объеме и улучшая условия диффузии водорода к поверхности катализатора. [c.277]


Смотреть страницы где упоминается термин Молекулярная диффузия смеси: [c.120]    [c.8]    [c.49]    [c.8]    [c.138]    [c.567]    [c.35]    [c.55]    [c.59]    [c.70]   
Массопередача (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузия молекулярная



© 2025 chem21.info Реклама на сайте