Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Твердые тела структура поверхности

    Почти всеобщее признание получила теория структуры двойного слоя, выдвинутая Штерном . Согласно этой теории двойной слой состоит из двух частей, одна из которых, толщиной приблизительно в один ион, практически жёстко закреплена на твёрдой поверхности и приближается по своей структуре к плоскопараллельному двойному слою Гельмгольца другая, диффузная наружная часть состоит из ионов, обладающих свободой перемещения плотность этих ионов в каждой плоскости, параллельной поверхности твёрдого тела, определяется двумя противоположными тенденциями стремлением теплового движения распределить ионы равномерно и стремлением сип электростатического притяжения сконцентрировать ионы определённого знака как можно ближе к поверхности. Распределение ионов в этой части двойного слоя аналогично распределению молекул газа в гравитационном поле, роль которого в данном случае играет электростатическое притяжение. С-потенциал можно, с достаточным приближением, рассматривать, как разность потенциалов между границей закреплённой части двойного слоя и точкой в жидкости, удалённой от поверхности, т. е. как падение напряжения в диффузной части двойного слоя. [c.457]


    А) при полировке и механической обработке становятся двояко-преломляющими Многие другие вещества обнаруживают аналогичные изменения свойств поверхности. Не подлежит сомнению, что часть кинетической энергии тела, трущегося о твёрдую поверхность, передаётся этой поверхности в результате местных актов адгезии в точках контакта и что напряжения, созданные таким путём в поверхностных слоях, достаточны для глубокого разрушения структуры и перегруппировки атомов и молекул в менее упорядоченную структуру обладающую большей потенциальной энергией, чем упорядоченная кристаллическая структура. В результате этого некоторая [c.228]

    В действительности механизм образования аморфного поверхностного- слоя, вероятно, является комбинацией многих процессов в поверхностных кристаллах возникают значительные напряжения сдвига, вызывающие скольжение вдоль различных плоскостей их структуры и её разрушение в случае более острых выступов разрушение может быть вызвано простым слсатием по поверхности могут кататься оторванные куски её, начиная с отдельных атомов и более крупные. Но кроме того, в настоящее время исчезли почти всякие сомнения в том, что при образовании тщательно отполированного, вполне аморфного слоя поверхностные слои претерпевают мгновенные акты плавления, обусловленные трением полирующего материала. Этот взгляд высказывался в течение последнего времени многими авторами но был отвергнут в первом издании этой книги ввиду кажущейся трудности поддержания столь высокой температуры в поверхностных слоях, обладающих такими широкими возможностями отвода теплоты, выделяемой при трении, путём теплопроводности. Однако в недавней работе Боудена и его соавторов показано, как теоретически, так и экспериментально, что температура поверхности может повышаться, и при трении скольжения действительно быстро повышается, до точки плавления данного твёрдого тела, причём никогда не поднимается выше её. Температура поверхности измерялась термопарой, образуемой самими трущимися поверхностями двух разнородных металлов. Полировка происходит только в тех случаях, когда точка плавления полирующего материала выще, чем полируемого. Так, камфора (температура плавления 178 ) полирует металл Вуда, но не полирует олово или свинец-оксамид (точка плавления 417 ) полирует олово, свинец и висмут, но не полирует сплава для рефлекторов (температура плавл. 745°), который, однако, полируется окисью свинца (температура плавл, 88 °) кальцит (1339 ) полируется згкисыо олова (1625 ) или окисью цинк (1800 но не полируется закисью меди (1235°). Твёрдость сам по себе играет незначительную роль, но изг,естно несколько случаев когда такие весьма тягучие металлы, как золото и платина, поли руются материалом, имеющим значительно более низкую темпера туру плавления. [c.229]


    Кроме того, процесс на пористых твёрдых телах, испещрённых мелкими каналами (или внутри них), обычно называемый адсорбцией, может отчасти обусловливаться обыкновенной конденсацией паров в мельчайших порах тела. Конденсация паров происходит также под действием ван-дер-ваальсовых сил, и нельзя искать качественного различия. между явлениями образования мономолекулярного, полимолекуляр-ного и сплошного слоя, заполняющего всё пространство узкого капилляра. В таких пространствах вогнутость мениска вызывает понижение давления насыщенного пара по сравнению с давлением над плоской поверхностью, что облегчает конденсацию (гл. I, 15). Такие мелкие поры имеются во многих твёрдых телах. Уголь, получаемый отнятием атомов водорода и кислорода от сложных органических соединений, нередко обладающих целлюлозообразными структурами, содержит поры всевозможных размеров, вплоть до диаметра, немногим превышающего размеры одного или двух атомов кислорода. Многие из атомов углерода на стенках этих пор должны иметь свободные валентности для хемосорбции газов, включая постоянные газы но в угле очень сильна адсорбция типа ван-дер-Ваальса. Силикагель, различные пористые глины, цеолиты и т. д. также адсорбируют, или, вернее, сорбируют таким путём значительные количества газов. [c.334]

    Заканчивая описание механизма действия катализаторов, остановимся на работах советского учёного Н. И. Кобозева и его сотрудников. Используя богатый опытный материал, Кобозев создал другую очень интересную теорию о природе активной поверхности катализаторов—так называемую теорию активных ансамблей .Сущность этой теории состоит в том, что активность поверхности твёрдого тела (кристалика) создаётся свободными атомами вещества, т. е. такими атомами, которые не входят в кристаллическую решётку катализатора. Они могут свободно перемещаться по поверхности катализатора. Однако путь их перемещения ограничен маленькими площадками (микроплощади), которые покрывают поверхность твёрдого тела. Эти площадки создают, как обычно говорят, мозаичную структуру поверхности. Единичные атомы не активны. Но когда они собираются в небольшие группы (ансамбли), по два-гри атома на микроплощадке, тогда они создают активные каталитические центры. Например, опытами и расчётами установлено, что для синтеза аммиака (NHз) на микроплощадке катализатора нужен ансамбль, состоящий из трёх атомов железа. Б этом случае катализатор (уголь с нанесённым на его [c.27]

    Существенно отметить исследования о структуре адсорбционных слоёв на различных границах раздела (моно-молекулярные п полимолекулярные слои). В последнее время внимание обращается на явления фазовых переходов из одного состояния адсорбционной плёнки в другое. Когда речь идёт о конденсированных адсорбционных плёнках, то интересно поставить вопрос о различии двух-и трёхмерных образований (Ландау, Левич) [69]. При тепловом движении в твёрдых телах нет нарушения дальнего порядка (Власов). Между тем, в адсорбционных конденсированных плёнках на поверхности жидкости нельзя ожидать эффекта дальнего порядка, и только соседние молекулы плёнки в своём движении координированы (эффект ближнего порядка). Можно думать, что в конденсированных плёнках на поверхности твёрдого тела (трёхмерного кристалла-адсорбента), благодаря взаимодействию адсорбата с адсорбентом, в котором имеет место эффект дальнего порядка, этот последний скажется на корреляции движения двух атомов и на большиз расстояниях между ними. [c.118]


Смотреть страницы где упоминается термин Твердые тела структура поверхности: [c.228]    [c.228]    [c.240]   
Физическая химия поверхностей (1979) -- [ c.229 , c.424 ]




ПОИСК





Смотрите так же термины и статьи:

Структура твердых тел

Твердые тела



© 2025 chem21.info Реклама на сайте