Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Отвод теплоты

    Реактор для сернокислотного алкилирования с перемешивающим устройством имеет внутренний трубный пучок 3 для отвода теплоты реакции, по которому циркулирует охлаждающая жидкость (рис. 142). В нижней части реактора расположен пропеллерный насос 4, создающий интенсивное перемешивание поступающего снизу сырья И поступающей сверху кислоты. [c.277]

    Если скорость разветвления цепей значительно превышает скорость их обрыва, то цепная реакция может проходить со взрывом. Цепной взрыв следует отличать от термического взрыва, связанного с экзотермическим характером реакции. Когда скорость возникновения теплоты в системе, в которой проходит химическая реакция (не только цепная), значительно выше скорости отвода теплоты, температура начинает быстро возрастать. Это обусловливает стремительный рост скорости реакций, приводящий к взрыву. [c.232]


    Принцип первого метода состоит в прямом охлаждении слоя катализатора за счет циркуляции газа с охлаждением последнего за пределами реакторов. Так как теплоемкость газа невелика, то необходимая для отвода теплоты реакции кратность циркуляции очень значительна, тем более что увеличение температуры газового потока не должно быть велико. Применялась кратность циркуляции, равная 100, т. е. на 1 л свежего газа подавалось 100 л циркуляционного. [c.113]

    Хлорирование когазина (в промышленности обычно применяют фракцию 280—320°) проводят при температуре 60—100° в колонне. Для отвода теплоты реакции применяют рециркуляцию жидкой реакционной смеси через холодильник. Таким способом легко достигается степень [c.239]

    Для отвода теплоты, выделяющейся в результате экзотермической реакции сульфохлорирования, установлен охлаждающий змеевик. Газы, выходящие из верхнего конца сосуда, а именно непрореагировавший углеводород, двуокись серы и хлористый водород, отводят в промывную башню, в которой они освобождаются от хлористого водорода и двуокиси серы, а углеводород направляют в трубопровод отходящих газов. В процессе реакции четыреххлористый углерод обогащается продуктами реакции. Когда концентрация сульфохлоридов достигнет примерно 20%, то ее поддерживают на этом уровне непрерывным удалением части раствора и добавлением свежего четыреххлористого углерода. [c.390]

    При тепловых эффектах реакций выше 12о кДж/кг, с учетом теплопотерь во внешнюю среду, градиент температур в реакторе (разность температур между входом и выходом из реактора) может достигать 40 —50 °С, что способствует усилению нежелательных вторичных реакций расщепления углеводородов и сокращению диапазона варьируемых температур по мере отработки катализатора. В этом случае экзотермический характер превращений требует отвода теплоты из зоны реакции, поэтому выбирают секционную конструкцию реактора. [c.80]

    В технике часто необходимо подводить (или отводить) теплоту к газу (жидкости), текущему по трубе, которая заполнена зернистым слоем. Примером могут служить контактные аппараты для проведения каталитических реакций и аппараты для термической переработки твердого топлива. Об ычно нужно знать распределение температур в самом зернистом слое и необходимый для отвода определенного количества теплоты размер поверхности теплообмена или (при заданной поверхности) разность м ежду средней температурой газа в трубе и температурой среды, омывающей трубу снаружи. [c.127]


    Теплоемкость газа не является величиной постоянной. Она зависит от условий, в которых происходит подвод или отвод теплоты. Различают теплоемкость газа в процессах при постоянном давлении Ср и в процессах при постоянном объеме Св. [c.25]

    При отводе теплоты циркуляционным орошением (см. рис. 34, г) часть жидкости забирается с одной из верхних тарелок колонны, прокачивается насосом через холодильник и охлажденная возвращается на верхнюю тарелку колонны. В результате контакта паров с циркулирующим на верхних тарелках холодным орошением происходит тепломассообмен и образуется количество жидкости, достаточное для поддержания нормального уровня ее на тарелках. [c.104]

    Цикл Карно — это идеальный цикл. Его невозможно в точности осуществить в реальной тепловой машине, потому что нельзя обеспечить изотермический подвод п отвод теплоты, а также расширение и сжатие рабочего тела без теплообмена с окружающей средой. Тем не менее исследования Карно имеют большое значение. Они показали, в частности, что для повышения экономичности тепловых двигателей надо осуществлять подвод теплоты к рабочему телу при возможно более высокой температуре, а отвод — при возможно более низкой. [c.32]

    Вследствие высокой растворимости H2S в NMP необходимо охлаждать нижнюю секцию абсорбера для отвода теплоты абсорбции. [c.182]

    Двухфазные элементы процесса дают возможность сравнительно легко изменять температуру и химический состав фаз, находящихся в любом агрегатном состоянии. При отсутствии химической реакции температура и состав отдельной фазы могут не меняться.Требуемое же пх изменение достигается с помощью подвода или отвода теплоты и компонента при соприкосновении двух фаз. [c.146]

    Таким образом, для изотермических реакторов с отводом теплоты путем теплопроводности приемлемые размеры характеризуются максимумом кривой. Если известно расстояние d, то можно, но трудно осуществить равномерное распределение температур. [c.229]

    Если приходится иметь дело с теплопереносом, от которого зависит ход всего превращения (например, при подводе или отводе теплоты от слоя катализатора, когда необходимо поддерживать в узком интервале температуру реакции с большим тепловым эффектом), в наиболее простом случае зависимость подобна приведенной в предыдущем примере и следует из закона Фурье  [c.351]

    Необходимость применения принципа технологической соразмерности может быть показана на примере процесса абсорбции газа жидкостью с одновременной сильно экзотермической реакцией. В этом случае развитие поверхности соприкосновения фаз, к которому обычно стремятся при проведении процессов такого типа, целесообразно только в определенных пределах. При возрастании скорости абсорбции увеличивается количество теплоты, выделяемой в единице объема аппарата, а следовательно, повышается температура системы (рис. 1Х-73,а). Вследствие увеличения температуры возрастает равновесное давление газа над жидкостью ро (рис. 1Х-73, б) и уменьшается движущая сила процесса р — ро-Таким образом, процесс будет протекать вдали от состояния равновесия. Изменение величины движущей силы с повышением температуры представлено на рис. 1Х-73, в. Скорость абсорбции возрастает с развитием поверхности соприкосновения фаз и увеличением температуры в соответствии с зависимостями, рассмотренными в разделе УИ1. Резюмируя, можно утверждать, что существует оптимальная величина поверхности соприкосновения фаз для определенных условий отвода теплоты Из системы при данном тепловом эффекте реакции, обеспечивающая максимальную скорость процесса (рис, 1Х-73,г). [c.422]

    В принципе можно рассчитывать так же и процессы с отводом теплоты, но для этого должен быть заранее известен закон, по которому она отводится в процессе сжатия или расширения. Практически наиболее удобно такие процессы рассматривать как политропные. Если же закон, по которому отводится теплота, можно представить только в зависимости от термодинамической температуры, то применение метода условных температур себя не оправдывает, так как в процессе расчета на каждом шаге необхо-ди.мо обращаться к уравнению состояния, чтобы перейти от условной температуры к термодинамической. [c.120]

    Для преобразования теплоты в работу необходимо иметь рабочее тело, т. е. вещество, способное воспринимать теплоту и совершать работу. В результате подвода или отвода теплоты рабочее тело либо расширяется, совершая работу, либо сжимается под действием внешних сил с затратой работы извне. [c.19]

    Съем тепла осуществляется в основном через рубашку реактора, охлаждаемую рассолом. Среди способов отвода теплоты полимеризации известен также метод охлаждения реакционной массы за счет частичного испарения растворителя и мономера. При этом следует принимать меры по предотвращению вспенивания [44]. [c.221]


    Фенольный раствор расслаивается на фенол и водный раствор состава С, в пропорции, отвечающей точке В, а избыток фенола выделяется в твердом виде. Таким образом, по мере отвода теплоты раствор В постепенно разрушается, распадаясь на твердый фенол и раствор С, т. е. равновесие [c.208]

    В качестве средства для обезжиривания шерсти он заслуживает предпочтения перед четыреххлористым углеродом, три- или перхлорэтиле-ном, так как лучше растворяет смолистые комки. Широко применяется хлористый метилен и как растворитель для производства клея на основе полихлорвиниловой пластмассы игелит [162]. Кроме того, он является исходным сырьем для производства хлорбромметана. В растущих количествах хлористый метилен применяют в качестве вспомогательного растворителя для отвода теплоты реакции при производстве ацетилцеллюлозы. Хлористый метилен лишь медленно гидролизуется водой при 100°. Он вызывает коррозию латуни при температурах выше 60°. Алюминий, медь, олово, свинец и сталь не корродируют под действием хлористого метилена при температурах до 140° [163]. [c.209]

    В (7.31) перед Q берется знак плюс при отводе теплоты из аппарата, например при экзотермической реакции, и знак минус — [c.208]

    Газ сжимают до 3—4 ат, отводя теплоту сжатия водой, после чего охлаждают в три ступени до низкой температуры. Конденсат, выделяющийся на отдельных ступенях охлаждения, напра1зляют в стабилизационную колонну, из которой, как указывалось выше, в качестве головного погона отбирают сжиженные газы. [c.30]

    Существует другой способ интерпретации первого закона, имеющий особо важное значение для химии. Будем рассматривать уравнение (15-1) просто как определение некоторой функции, называемой внутренней энергией Е. Напомним, что при нагревании газа он может совершать работу (см. подпись к рис. 15-2), но можно и обратить этот процесс, т.е. совершать работу над газом, сжимая его, и при этом отводить теплоту, выделяемую газом. Наконец, если нагревать газ, не давая ему выполнять работу, то в этом случае происходит повышение температуры газа. И наоборот, если позволить газу, находящемуся под высоким давлением, расширяться и совершать работу, не нагревая его, то в таком процессе обнаруживается охлаждение газа. Подбирая требуемые условия, удается манипулировать величинами дат независимо. За тем, что происходит в каждом случае, удобно следить, если определять изменение внутренней энергии, АЕ, как разность между добавляемым в систему количеством теплоты и выполненной системой работой, как это следует из уравнения (15-1). Если при добавлении в систему некоторого количества теплоты система выполняет в точности эквивалентную работу, внутренняя энергия системы остается неизменной. Когда мы нагреваем газ, но ограничиваем его объем, лишая газ возможности расширяться и вьшолнять работу, внутренняя энергия газа возрастает на величину, равную поступившему в него количеству теплоты. Наконец, если мы используем газ для совершения работы, не поставляя в него теплоту, внутренняя энергия газа уменьшается на величину, равную выполненной работе. Наши обьщенные наблюдения относительно того, что в одних из этих случаев газ нагревается, а в других охлаждается, указывают на связь внутренней энергии и температуры газа. [c.15]

    Модификация жидкофаэного процесса, отличающаяся тем, что отвод теплоты реакции осуществляется не в выносном холодильнике, черев который циркулирует катализаторпый шлам, а непосредственно в реакторе, разработана Кольбелем. Работы, начатые еще в 1936 г., продолжались затем в послевоенные годы и привели к созданию технического процесса, о котором здесь следует привести некоторые дополнительные данные. [c.118]

    В этом случае выполнение важнейших требований, связанных с успешным проведением процесса — точное регулирование интенсивности света, обеспечивающее расходование всего подаваемого хлора с выделением только хлористого водорода, применение коррозийностойких материалов, достаточный отвод теплоты реакции и тепла ртутной лампы, интенсивное перемешивание жидкой и газовой фаз для полного завершения реакции — достигнуто совершенно другим способом. [c.147]

    В изотермических реакторах образующееся или потребляемое количество теплоты каким-либо способом отводится или подвозится без изменения температуры в реакторе. Сначала рассмотрим экзотермические реакции. В этом случае отвод теплоты можно осуществить только за счет теплообмена, а = О и температура отводящей теплоту среды низкая. Разность температур продукта и отводящей теплоту среды А Г при этом незначительна. Изотермические реакции можно проводить только в непрерывнодействующих реакторах, так как в реакторах периодического действия скорость тенлопереноса должна изменяться в зависимости от времени, чтобы поддерживать постоянную температуру продукта. [c.223]

    С, количество воздуха позиачительио превышает теоретическое. 2. 700 °С, количество воздуха в 2—3 раза превышает теоретическое. 3. 900 °С, теоретическое количество О2. 4. Отвод теплоты, количество воздуха в 1,6 раза превышает теоретическое, 900 °С, [c.143]

    Недостатки насадочных аппаратов связапы с трудностью отвода теплоты поглощения и механическим разрушением па-садок. [c.58]

    Задаваясь произвольно концентрацией х между концентрациями хн И Хк, можно найти температуру абсорбента в любом сечении абсорбера и вычислить среднюю температуру абсорбции. В случае, если теплота абсорбции достаточно велика, повышение средней температуры абсорбции может помешать достижению требуемого извлечения целевых компонентов. В этом случае необходим промежуточный отвод теплоты, т. е. в одном-двух сечениях аппарата абсорбент охлаждается для отжения его температуры. [c.76]

    Для медленных реакций температурные градиенты являются малосущественными, но для экзотермических реакций они составляют автоката-литический компонент, который может вызвать очень быстрое увеличение скорости реакции вплоть до взрыва. Если рассматривать элементарный объем в системе с экзотермической реакцией, то в этом элементе будет достигнуто кваз11Стационарное состояние температурного равновесия в том случае, когда теплота, выделяющаяся в результате реакции, компенсируется отводом теплоты из этого элемента путем теплопроводности, конвекции и диффузии. Если последние процессы не способны достаточно быстро рассеять теплоту реакции, то скорость тепловыделения усиливается и возникает неустойчивое состояние, при котором возрастание скорости реакции ограничивается только подачей реагентов. Быстрое увеличение скорости реакции вследствие прогрессирующего тепловыделения в системе приводит к так называемому тепловому взрыву. Экзотермическая реакция нагревает газ до критической температуры взрыва. [c.372]

    Третий и четвертый критерии Дамкелера Оаш и Daiv характеризуют, соответственно, подобие процессов подвода (или отвода) теплоты реакции с потоком реагентов и с помощью теплопроводности. [c.462]

    Эффективность работы регенератора обычно оценивается рядом показателей. К ним относятся глубина и интенсивность выжига кокса, удельный расход воздуха на регенерацию катализатора, соотношение концентраций оксидов углерода в продуктах сгорания. При проектировании регенератора необходимо предусмотреть элективную систему регулирования отвода теплоты, рыделяющейся в результате регенерации катализатора. [c.33]

    Введение некоторых количеств неорганических солей в водный раствор эмульгатора способствует снижению критической концентрации мицеллообразования (ККМ), повышению солюбилизации эмульгируемых мономеров, снижению поверхностного натяжения и повышению устойчивости образующегося латекса, улучшению его реологических свойств. В отсутствие электролитов образуется латекс, характеризующийся высокой вязкостью, вследствие чего нарушается нормальный отвод теплоты реакции полимеризации. В особенности высокую вязкость имеют латексы, полученные с применением жирнокислотного эмульгатора. В производстве бутадиен-стирольных каучуков применяются хлорид калия и тринат-рийфосфат (НазР04 12НгО), которые вводят в раствор эмульгатора совместно или в отдельности. Выбор указанных электролитов основан на отсутствии их влияния на скорость полимеризации и высаливание эмульгатора. [c.245]

    Реакционные аппараты — основное оборудование химических цехов. По сравнению с аппаратуроп для физико-химических процессов они имеют ряд особенностей химические реакции, как правило, сопровождаются значительным тепловым эффектом, а следовательно, возникает проблема подвода или отвода теплоты и регулирования температуры большинство химических процессов протекает в присутствии катализаторов, что создает, в свою очередь, проблемы хорошего контакта реагирующих продуктов с катализатором, его загрузки, выгрузки и регенерации. [c.202]

    По мере отвода теплоты от жидкого раствора, исходное состояние которого характеризуется фигуративной точкой к, температура понижается и фигуративная точка опускается. Точка I отвечает предельному охлаждению, при котором система еще однофазна при дальнейшем охлаждении выделяется твердый раствор, состав которого меняется по линии солидуса со состав равновесного с ним жидкого раствора меняется по линии ликвидуса са. Таким образом, например, фигуративной точке всей системы т отвечают точки т" и т равновесных жидкого и твердого растворов. В момент достижения температуры, которой отвечает точка п, система состоит из жидкого раствора а и твердого раствора о. [c.406]

    Для получения крупных заготовок молибдена применяют ду говую плавку, позволяющую получать слитки массой до 2000 кг. Плавку в дуговых печах ведут в вакууме. Между катодом (пакет спеченных штабиков молибдена) и анодом (охлаждаемый медный тигель) зажигают дугу. Металл катода плавчтся и собирается в тигле. Вследствие высокой теплопроводности меди и быстрого отвода теплоты молибден затвердевает. [c.659]


Смотреть страницы где упоминается термин Отвод теплоты: [c.16]    [c.162]    [c.17]    [c.47]    [c.66]    [c.69]    [c.104]    [c.129]    [c.226]    [c.405]    [c.408]    [c.32]    [c.210]    [c.215]   
Смотреть главы в:

Процессы и аппараты химической технологии Часть 1 -> Отвод теплоты

Процессы и аппараты химической технологии Часть 1 -> Отвод теплоты




ПОИСК





Смотрите так же термины и статьи:

Изотермический реактор с отводом теплоты конвекцией

Камеры холодильные системы отвода теплоты

Кристаллизаторы с отводом теплоты через охлаждаемые поверхности

Отвод

Отвод теплоты к окружающей среде

Охлаждение отвод теплоты

Охлаждение отвод теплоты водой

Охлаждение отвод теплоты водооборотные циклы

Охлаждение отвод теплоты воздухом

Охлаждение отвод теплоты низкотемпературными жидкими

Охлаждение отвод теплоты расход охлаждающей воды

Охлаждение отвод теплоты хладоагентами

Промышленные способы подвода и отвода теплоты в химической аппаратуре

Теплопередача в камерах. . Системы отвода теплоты в каме

Теплота отвод охлаждение способ



© 2025 chem21.info Реклама на сайте