Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка газа хемосорбцией

    Абсорбционные методы очистки газов основаны на различной растворимости газов в жидкостях. Абсорбционные процессы можно классифицировать по различным признакам. В зависимости от физико-химической основы их можно разделить на процессы физической абсорбции и химической абсорбции (или хемосорбции, т. е. абсорбции, сопровождающейся химической реакцией газа с хемосорбентом). Это разделение в целом является условным. Процессы абсорбции, сопровождающиеся относительно сильным физическим взаимодействием молекул газа с молекулами абсорбента (например, с образованием водородной связи), близки к процессам абсорбции при слабой химической реакции. [c.25]


    При очистке газов от кислых компонентов использовать процесс хемосорбции 15%-ным водным раствором моноэтаноламина [1], получивший наибольшее промышленное применение. Схема материальных потоков аппарата показана на рис. 1.1. [c.7]

    Это связано с тем, что при температуре до 300°С присутствующие в газовых выбросах производства бутадиенового каучука СКД катализаторные яды /галоиды и их органические производные/ быстро снижают активность катализатора АП-56 и выводят его из строя. Поэтому для использования данного способа окисления температуру контактирования повышают до 450-500°С. В этих условиях необратимая хемосорбция йода и его производных активным оксидом алюминия практически исчезает, а затраты топлива на очистку возрастают. Этот факт выдвигает более высокие требования к разрабатываемым катализаторам для очистки газов и ставит задачу по созданию способов, предусматривающих разработку методов предварительной подготовки очищенных газов /например, очистки от ядов отмывкой, адсорбцией и т.д./. [c.30]

    ХЕМОСОРБЦИЯ (хемисорбция, или химическая сорбция) — процесс поглощения (адсорбции) газов, паров или растворенных веществ твердыми или жидкими поглотителями (адсорбентами), сопровождающийся образованием химических соединений. X. широко применяется в промышленности для очистки газов, дегазации, разделения металлов, а также в научных исследованиях. [c.273]

    Очистка газа от двуокиси углерода. Для очистки га зов от содержащейся в них СОз О5—20 объемн. %) применяют физические и химические методы. Физические методы основаны на значительной растворимости СОг под давлением или на конденсации СОа при умеренном охлаждении. Химические методы основаны на хемосорбции СОг растворами различных реагентов [81—83]. При производстве технического водорода наиболее распространено поглощение СОг водой под давлением, растворами аминоспиртов или горячим карбонатным раствором. Поглощение промывной водой под давлением основано на значительно большей растворимости СОг в воде по сравнению с водородом и другими компонентами очищаемого газа. Растворимость СОг, Иг, СО, СН4 приводится в табл. 30 [84]. [c.123]

    АДСОРБЦИЯ — поглощение газов или растворенных веществ из раствора поверхностью твердого тела нли жидкости. А.— один из видов сорбции. Происходит под влиянием молекулярных сил поверхностного слоя адсорбента. В некоторых случаях молекулы адсорбата (вещества, которое поглощают) взаимодействуют с молекулами адсорбента и образуют с ними поверхностные химические соединения (см. Хемосорбция). При постоянной температуре физическая А. увеличивается при повышении давления или концентрации раствора. Процесс, обратный адсорбции, называется десорбцией. А. сопровождается выделением теп 1а. При повышении температуры А. уменьшается. А. применяется в промышленности для разделения смесей газов и растворенных веществ, для осушки и очистки газов (например, воздуха в противогазах), жидкостей (этиловый спирт очищают от сивушных масел активированным углем). А. играет большую роль во многих биологических и почвенных процессах. Большое значение имеет адсорбция радиоактивных элементов стенками посуды или поверхностью других твердых тел, что приводит к трудностям во время проведения эксперимента и к радиоактивному загрязнению. [c.8]


    Эти способы, в которых для хемосорбции СО2 и НзЗ применяются полиамины, преимущественно используют для очистки газов нефтепереработки, например для очистки коксового газа. Растворы диэтилентриамина (ДЭТА) и этилендиамина (ЭДА) обладают значительно большей скоростью хемосорбции СО2 и обеспечивают более глубокую очистку газов от СО2 (до 0,01 % по объему) по сравнению с моноаминами. Кроме того, в соответствии со стехиометрией их поглотительная способность существенно выше. Так, для ДЭТА она составляет [c.23]

    Предельно допустимая поглотительная способность абсорбента ограничивается как нормами допустимой коррозии аппаратуры, так и предельно допустимой теплотой хемосорбции. Коррозионные ограничения на концентрацию первичных аминов в растворе составляют 0,5 моль/л вторичных аминов -0,85 моль/л. Наконец, теплота реакции кислых газов с первичными аминами на 25 % выше, чем со вторичными аминами, что определяет для каждого из аминов свои критические ограничения при очистке газов с высоким содержанием кислых компонентов. [c.25]

    АБСОРБЦИЯ — поглощение веществ жидкостями или твердыми телами — абсорбентами. В отличие от адсорбции, при А. поглощение веществ происходит всем объемом поглотителя. А. может быть обусловлена химическим взаимо действием (см. Хемосорбцию). Применяется в промышленности для разделения газовых смесей и очистки газов, для получения различных продуктов [c.5]

    Адсорбция твердыми поглотителями основана на избирательном извлечении вредных примесей из газа при помощи адсорбентов — твердых зернистых материалов, обладающих высокой уделЕ ной поверхностью. В газоочистке применяется как физическая адсорбция, основанная на ван-дер-ваальсовых силах, так и хемосорбция. В качестве адсорбентов для очистки газов применяют высокопористые материалы, чаще всего активированный уголь, силикагель и синтетические цеолиты (молекулярные сита). Для промышленной практики наиболее важны высокая поглотительная способность адсорбента, его адсорбционная активность, избирательность действия, термическая устойчивость, длительная служба без изменения структуры и свойств поверхности, легкость регенерации, малое гидравлическое сопротивление потоку газа. Активированные угли различных марок и силикагели уже давно и успешно применяются в промышленности. [c.235]

    Механизм ионного обмена при очистке газов изучен недостаточно полно. Предполагается, что он включает следующие основные стадии 1) диффузия вытесняющих ионов из ядра газовой фазы к поверхности ионита 2) диффузия вытесняющих ионов с поверхности ионита внутрь его зерна к точкам обмена 3) обмен ионов на активных центрах 4) диффузия вытесненных ионов из зерна ионита к его поверхности 5) диффузия вытесненных ионов с поверхности ионита в ядро газовой фазы. Таким образом, скорость ионообменного процесса лимитируется скоростью наиболее медленной стадии. Скорость реакции этой стадии можно определить из уравнений кинетики физической адсорбции или хемосорбции, приведенных ранее. Например, скорость протекания третьей стадии характеризуется уравнением кинетики химической реакции, а скорость диффузии — уравнениями массообмена. Подробно закономерности кинетики [c.84]

    Для сравнения методов очистки и их техноэкономических показателей рассмотрим извлечение из газов сероводорода. Для очистки от этой токсичной примеси применяются абсорбционный, адсорбционный и каталитический способы. Абсорбционный способ очистки от H2S растворами этаноламинов или мышьяково-содовым раствором применяют в производстве водорода для синтеза аммиака. Для очистки выхлопных газов от H2S применяют иногда более дешевые растворы карбонатов щелочны металлов, аммиака, суспензии гидроокиси кальция, гидроокиси железа (III) в содовом растворе (железосодовый раствор) и др. Во всех методах в жидкой фазе протекают реакции, повышающие скорость процесса и степень извлечения H2S. Отработанные поглотительные растворы необходимо регенерировать во избежание новых источников загрязнения водоемов. Все абсорбционные очистительные установки, состоящие из башен с насадкой, работают при низких температурах 20—30° С и атмосферном или повышенном давлении (до 30 ат). Хемосорбция сопровождается десорбционными стадиями регенерации поглотительных растворов (при нагреве или перегонке в вакууме с выделением более концентрированного сероводорода, идущего на производство серной кислоты). При содово-мышьяковом способе продукты регенерации — сера и тиосульфат натрия. Принципиальная схема мышьяково-содовой очистки газов от сероводорода представлена на рис. 116. [c.268]

    Химические реакции,очистки протекают на границе раздела фаз и скорость этого процесса определяется скоростью подвода реагирующих компонентов к поверхности раздела фаз, скоростью химической реакции и отвода ее продуктов в объем жидкости. Поэтому вихри, способствующие конвективному переносу массы и энергии из одной фазы в другую, интенсифицируют также и процесс хемосорбции. Такая интенсификация осуществлена в устройстве , предназначенном для очистки газов от паров и тумана азотной кислоты, а такл е оксидов азота (рис. 4-1). Газ последовательно проходит через аппараты I и II. Каждый аппарат имеет вихревое контактное устройство и волокнистый фильтр, улавливающий туман. В каждом контактном устройстве жидкость циркулирует под действием энергии газового потока. [c.61]


    При осуществлении процессов очистки газов от вредных примесей следует учитывать возможность образования химических комплексов. Так, исследованиями, проведенными в МХТИ им. Д. И. Менделеева [81], показано, что при температурах выше 150 °С серный ангидрид реагирует с Н-морденитом, прячем хемосорбция практически необратима. При относительно низких температурах (150—200 °С) центрами адсорбции кислых газов являются положительно заряженные катионы металлов, а в области высоких температур (300 °С) хемосорбция постепенно переходит в стехиометрическое взаимодействие трехокиси серы с окисью алюминия решетки цеолита. [c.125]

    Одним из вариантов сорбционной очистки газов от ацетилена и окиси азота является хемосорбция жидкими растворителями [28— 30], в результате которой удаляемые примеси взаимодействуют с поглотителем. Его выводят из системы для регенерации. В некоторых случаях сорбент не регенерируют. [c.434]

    Наличие горизонтального участка на линии-равновесия позволяет использовать хемосорбцию для глубокой очистки газа-носителя от поглощаемого компонента. В случае необратимой химической реакции такая очистка может быть практически полной. [c.926]

    Давление на стадии абсорбции 1,0—2,0 МПа. Регенерация раствора проводится снижением давления при близких с процессом хемосорбции значениях температуры. Степень очистки газа от СО в этом случае несколько ниже, чем при очистке растворами МЭА (остаточное содержание СО 0,05—0,1% масс.), но поташ дешевле МЭА. [c.101]

    Указанные недостатки удается устранить, применяя в качестве абсорбентов диэтаноламин, диизопропаноламин, Диэтилен-гликольамин. Использование последнего позволяет на 25—40% снизить удельные расходы растворителя и энергетические затраты по сравнению с очисткой этаноламином. Извлечение кислых компонентов аминами осуществляется путем хемосорбции, благодаря чему достигается глубокая очистка газов. Конечное содержание H2S в очищенном газе снижается до 5—6 мг/м , СО2 —до0,01% (об.). [c.148]

    При абсорбционной очистке газов концентрации улавливаемых примесей обычно невелики, что позволяет рассматривать систему как слабоконцентрированную. Концентрации, соответствующие равновесию фаз, те равновесные концентрации в газовой и конденсированной фазах, для таких систем достаточно точно определяются законами Рауля и Генри (1.62, 1 63) В качестве абсорбентов для очистки выбросов на практике используют только капельные жидкости Выбор абсорбента зависит от ряда факторов, главным среди них является способность поглощать загрязнитель из газовой фазы Так, воду можно достаточно эффективно использовать для обработки газов, содержащих хорошо растворимые загрязнители, такие как НС1, HF, NH , но она менее пригодна как абсорбент для улавливания слаборастворимых H,S, С , SO,. В последнем случае более приемлема хемосорбция, например, раствором щелочи или суспензией извести. [c.327]

    Каталитические процессы конверсии окиси углерода с водяным паром, синтеза и окисления аммиака, синтеза метанола и изобутилового масла, окисления сернистого газа, очистки газов методами гидрирования и окисления, а также ряд процессов гидрирования, дегидрирования и окисления, несмотря на большое разнообразие реагирующих веществ и применяемых катализаторов, имеют принципиальное сходство в отношении их механизма. На основе современных представлений о гетерогенном катализе эти процессы относятся к типу окислительно-восстановительного катализа катализатор в таких процессах служит переносчиком электронов от одних компонентов реагирующей системы к другим. Это перераспределение валентных электронов может проходить двояким путем а) катализатор при хемосорбции реагентов деформирует электронные оболочки реагирующих молекул и атомов вследствие взаимодействия с ними, приводя их в реакционно способное состояние в определенном направлении (по реагирующим связям), т. е. ослабляя одни химические связи и упрочняя другие б) катализатор при хемосорбции реагентов отнимает электроны от одних реагирующих молекул и атомов и передает их другим, т. е. проводит направленное образование противоположно заряженных ионов из реагирующих частиц. В этом случае катализатор является непосредственным переносчиком электронов от одних реагирующих молекул к другим. [c.99]

    Окончательная очистка газа от сероводорода до санитарной нормы проводится в сероочистных башнях путем хемосорбции сероводорода болотной рудой, входящей в состав поглотительной массы. Кроме болотной руды, она включает древесные опилки и известь. Установка состоит из последовательно соединенных башен порядок прохождения газа через башни периодически изменяется, [c.256]

    Известно большое количество различных методов очистки газов от органической серы. К ним относятся, в частности 1) адсорбция на активированном угле 2) каталитическое гидрирование с последующим поглощением сероводорода 3) хемосорбция 4) абсорбция жидкими поглотителями. Очистка по первому и четвертому методам проводится при обычных температурах, второй и третий методы используются при повышенных температурах. [c.140]

    Одной из важнейших и первых стадий в производстве аммиака является очистка газов. Различают жидкостные (мокрые) и сухие способы промышленной очистки. Жидкостные способы осуществляют с помощью жидких поглотителей — абсорбентов эти способы основаны на физической абсорбции и абсорбции, сопровождаемой химическими реакциями. Сухие способы очистки основаны на поглощении веществ твердыми поглотителями. Сюда относятся способы, основанные на физической адсорбции и хемосорбции, на каталитическом превращении примесей в легко удаляемые или менее вредные соединения. В качестве адсорбентов применяют активированный уголь, смеси активной окиси железа и соды (железо-содовая масса) и др. [c.262]

    В органическом синтезе в диффузионной области гетерофазных реакций, видимо, протекает взаимодействие органических веществ с газообразным SO3 и, возможно, с олеумом, нейтрализация карбоновых или сульфокислот щелочами и др. Наиболее часто эта область встречается в процессах хемосорбции, например при очистке газов или жидкостей от кислых примесей (НС1, H2S, СО2) водными растворами щелочей. [c.263]

    Зонная модель процесса. В общем случае хемосорбционный процесс очистки газа от НаЗ в тарельчатой колонне может протекать в условиях значительного изменения концентраций компонентов и МЭА по высоте аппарата. Изучение кинетики хемосорбционного процесса показывает, что его математическая модель существенно зависит от высоты колонны, для учета указанных изменений следует рассматривать зонную математическую модель процесса хемосорбции. Приведем анализ такой модели для случая гидродинамической модели идеального вытеснения по двум фазам (рис. 1У-6). На схеме обозначены С, Ь — нагрузки колонны по газу и жидкости к — высота колонны Ка, К — коэффициенты массопередачи по газу и жидкости с — концентрация МЭА X, у — равновесие концентрации компонента п в жидкой и газовой фазах (1Р — элементарное сечение аппарата. [c.254]

    Элементы расчета абсорбционных и хемосорбционных процессов рассмотрены в ч. I, гл. V. Основные технологические показатели абсорбционной очистки степень очистки (к. п. д.) т] и коэффициент массопередачи k определяются растворимостью таза, гидродинамическим режимом в реакторе (Г, Р, w) и другими факторами, в частности равновесием и скоростью реакций при хемосорбции. При протекании реакций в жидкой фазе величина k выше, чем при физической абсорбции. При хемосорбции резко меняются равновесные соотношения, в частности влияние равновесия на движущую силу абсорбции. В предельном случае для необратимых реакций в жидкой фазе (нейтрализация) образующееся соединение имеет практически нулевое давление паров над раствором. Однако такие хемосорбционные процессы не, цикличны (поглотительный раствор не может быть вновь возвращен на очистку) и целесообразны лишь при возможности использования полученных растворов иным путем. Большинство хемосорбционных процессов, применяемых в промышленности, обратимы и экзотермичны, поэтому при повышении температуры раствора новое соединение разлагается с выделением исходных компонентов. Этот прием положен в основу регенерации хемосорбентов в циклической схеме, тем более, что их химическая емкость мало зависит от давления. Хемосорбционные процессы особенно целесообразны такнм образом для тонкой очистки газов, содержащих сравнительно малые концентрации примесей. [c.264]

    Очистка водными растворами алканоламинов. При подготовке различных технологических газов к переработке используется хемосорбция СО этаноламинами. Принципиальная технологическая схема этаноламиновой очистки газа приведена на рис. 1.13. [c.99]

    Адсорбция твердыми поглотителями основана на избирательном извлечении вредных примесей из газа при помощи адсорбентов — твердых зернистых материалов, обладающих высокой удельной поверхностью. В газоочистке применяется как физическая адсорбция, основанная на ван-дер-ваальсо-вых силах, так и хемосорбция. В качестве адсорбентов для очистки газов применяют высокопористые материалы, чаще всего активированный уголь, силикагель и синтетические цеолиты (молекулярные сита). Для промышленной практики наиболее важны высокая [c.265]

    Выше указывалось, что процессы очистки газов от двуокиси углерода и сероводорода, основанные на абсорбции хемосорбентами, имеют принципиальный недостаток, заключающийся в том, что расход тепла на 1 т аммиака сильно увеличивается с повышением концентрации СОа. Растворимость двуокиси углерода в этих растворителях с ростом парциального давления обычно возрастает очень медленно. В первую очередь это относится к хемосорбции водными растворами моноэтаноламина и в меньшей степени растворами горячего поташа. [c.193]

    Одним из методов очистки газа от серосодержащих примесей является хемосорбция, основанная на непосредственном связывании сероорганических соединений при 200—400° С твердыми по- [c.248]

    Абсорбер для очистки циркуляционного газа представляет собой вертикальный аппарат с барботажными тарелками. Ввиду сложности расчета процесса хемосорбции число теоретических тарелок подбирают на основании опытных данных. На действующих установках гидроочпстки для достижения высокой степени очистки газа в абсорбере установлено 20 барботажных тарелок. [c.93]

    Хемосорбционные методы. Очистка газов водными растворами этаноламинов. При подготовке различных технолог [с-ских газов к переработке (в частности, пирогаза к разделению) используют хемосорбцию диоксида углерода этаполамицамн. [c.48]

    Поскольку состав азотоводородной смеси, поступающей на синтез, определяется стехиометрическим соотношением азота и водорода, он практически одинаков для всех схем. Отличия в аппаратурно-технологическом оформлении различных схем касаются в основном стадий подготовки и очистки газа. В частности, можно использовать две принципиально разные схемы очистки азотоводородной смеси от двуокиси углерода, основанные на применении процессов хемосорбции и глубокого холода. [c.201]

    Химические процессы, при которых образуются слабоустойчивые соединения, часто называют хемосорбцией, подчеркивая сходство таких химических процессов с процессами сорбции. Примером таких реакций служит поглощение кислых газов — сероводорода и углекислоты — раствором этаноламинов. Химические особенности подобных реакций и степень устойчивости получаемых таким путем соединений бывают весьма различными, и они могут быть применены не только для очистки газов от вредных примесей, но и для выделения из какой-либо смеси нужных и ценных компонентов. [c.300]

    Газ парокислородной конверсии метана для производства синтез-газа также содержит излишнее количество оксида углерода (IV), который должен быть удален из него. Поэтому заключительной стадией процесса конверсии природного газа в обоих случаях является очистка конвертированного газа от оксида углерода (IV). Методы очистки от других примесей, так называемая тонкая очистка газа, были рассмотрены в главе XI. Наиболее распространенный метод удаления оксида углерода (IV) из конвертированного газа — этаноламинная очистка. В ее основе лежит хемосорбция оксида углерода 20% -ным раствором моноэтаноламина (МЭА). Образующиеся при этом карбонат и бикарбонат МЭА нестойки и при нагревании выше 100 С диссоциируют с выделением оксида углерода (IV) и регенерируют раствор МЭА  [c.225]

    Очистка газа этаноламинами является типичным примером кругового сорбционного процесса (рис. 101). В процессах такого типа сероводород поглощается из газа раствором реагента в одном аппарате и выделяется из раствора в результате его отпаривания в другом аппарате. Регенерированный таким образом реагент возвращают на поглощение сероводорода. Очистка газа происходит путем хемосорбции сероводорода 15—30%-ным водным раствором [c.277]

    Адсорбция. В кач-ве адсорбентов используют в осн. пористые тела с сильно развитой пов-стью активные угли, AljOj, силикагели, цеолиты. Физ. адсорбция газа сопровождается выделением теплоты, по кол-ву близкой к теплоте его конденсации, хемосорбция-кол-вом теплоты, соответствующим тепловому эффекту р-ции. Процесс проводят периодически в одном или неск. аппаратах с неподвижным слоем адсорбента либо непрерывно в адсорберах с движущимся нли псевдоожиженным слоем адсорбента. Адсорбция применяется для Г. р. при высоких и криогенных т-рах и разл. давлениях, для осушки и очистки газов от примесей, в вакуумной технике, хроматографии и др. [c.465]

    Абсорбция (от лат. absorptio — поглощение) — поглощение (растворение) веществ жидкостями или твердыми телами. В отличие от адсорбции поглощение веществ происходит во всем объеме поглотителя. А. связана с растворением веществ в поглотителе или с химическим взаимодействием (хемосорбция). А. используется в промышленности для разделения газовых смесей, очистки газов, получения различных продуктов (серной кислоты посредством А. SO3. соляной кислоты — А. газообразного НС1), разделения смесей веществ, в радиохимии и аналитической химии для разделения смесей элементов, выделения в чистом виде радиоактивных элементов. [c.4]

    Очистка газов растворами этаноламинов является типичным процессом хемосорбции, широко распространенным в настоящее время в промышленности. Изучению этого процесса посвящено много работ, однако и в настоящее время продолжаются исследования с целью его усовершенствования и интенсификации Поскольку наибольшее промышленное применение получил процесс очистки растворами моноэтаноламина (МЭА), ему уделяется значительное внимание. [c.120]

    Одним из методов очистки газов от серосодержаш,нх примесей является хемосорбция, основанная на непосредственном связывании сероорганических соединений при 200—400 °С твердыми поглотителями. Принципиальная схема процесса состоит из двух стадий нагревания газа и поглощения серы. Тепло газа может быть использовано при его дальнейшей переработке. Для приготовления поглотителей используются окислы цинка, железа, меди. [c.309]

    На основе анализа кинетических закономерностей процесса предложен [248] способ очистки газов от диоксида углерода щелочными хемосорбентами, по которому извлечение СОг осуществляют в аппаратах с частично затопленной насадкой (абсорберы с регулируемым запасом жидкости). Верхняя часть насадочного аппарата работает в пленочном режиме или режиме подвисания. Нижняя часть аппарата, где процесс хемосорбции в значительной степени обратим и протекает в переходной области и области, близкой к кинетической, затапливается. Сопротивление зоны затопления измеряют специально установленным дифманометром ДМПК-ЮО. Вторичный прибор пневматически связан с клапаном на линии насыщенного раствора. Величину сопротивления, соответствующую заданной высоте затопления, устанавливают на вторичном приборе. Разработаны методики расчета гидравлических показателей аппаратов с затопленной насадкой [235, 236, 265]. В качестве варианта возможно использование рециркуляции жидкости [239]. [c.208]

    Хемосорбция широко применяется в промышленных процессах для очистки газов. Очистка отходящих газов производства хлорсульфоновой кислоты от паров дурнопахнущего, токсичного и летучего пиросульфурилхлорида происходит за счет поглощения паров 820 012 водой или водЕшми растворами соляной и серной кислот,взаимодействия пиросульфурилхлорида с водой (гидролиз) и превращения его в серную кислоту и хлороводород, которые хорошо поглощаются ука-ЗаНЕШМИ жидкостями. [c.59]

    Некоторые формулы для расчета абсорбционных и хемосорбцион-ных процессов приведены в гл. V. Показатели абсорбционной очистки степень очистки (КПД) и коэффициент массопередачи к зависят от растворимости газа в абсорбенте, технологического режима в реакторе (ш, Т, Р) и от других факторов, например от равновесия и скорости химических реакций при хемосорбции. В хемосорбционных процессах, где в жидкой фазе происходят химические реакции, коэффициент массопередачи увеличивается по сравнению с физической абсорбцией. Большинство хемосорбционных процессов газоочистки обратимы, т. е. при повышении температуры поглотительного раствора химические соединения, образовавшиеся при хемосорбции, разлагаются с регенерацией активных компонентов поглотительного раствора и с десорбцией поглощенной из газа примеси. Этот прием положен в основу регенерации хемосорбентов в циклических системах газоочистки. Xe ю opбция в особенности применима для тонкой очистки газов при сравнительно небольшой начальной концентрации примесей. [c.169]

    В. М. Власенко рассматривает влияние макрофакторов на кинетику гетерогенно-каталитических реакций, протекающих в условиях примесных концентраций одного из реагентов. На примерах гидрирования окислов углерода (а также кислорода) на никелевом катализаторе в большом избытке водорода показано, что процесс тонкой каталитической очистки газов целесообразно проводить во внешне-диффузионном режиме. М. Г. Марце-нюк, М. Т. Русов и Н. П. Самченко исследовали раздельную и совместную хемосорбцию азота и водорода на дважды промо-тированном железном катализаторе синтеза аммиака. Предварительная адсорбция водорода усиливает адсорбцию азота в условиях предкатализа, а предварительная адсорбция азота снижает последующую адсорбцию водорода. При хемосорбции из азото-водородной смеси азот занимает лишь часть поверхности железа (На остальной части поверхности адсорбируется водород). В работе Н. К. Лунева и М. Т. Русова детально исследовано влияние процессов переноса на активность и селективность цинк-хромовых катализаторов гидрирования окиси углерода в спирты. Установлена зависимость селективности по каждому спирту от степени использования внутренней поверхности катализатора. [c.5]


Смотреть страницы где упоминается термин Очистка газа хемосорбцией: [c.101]    [c.238]    [c.48]    [c.297]   
Переработка нефтяных и природных газов (1981) -- [ c.138 ]




ПОИСК





Смотрите так же термины и статьи:

Тонкая очистка газов хемосорбция органической серы

Хемосорбция



© 2025 chem21.info Реклама на сайте