Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нулевой принцип термодинамики

    Термическое равновесие. Нулевой принцип термодинамики [c.16]

    Это положение, которым пользуются очень давно, было сформулировано значительно позже первого и второго начал термодинамики оно называется нулевым принципом термодинамики. [c.18]

    Принцип термического равновесия в современной термодинамике имеет такое же значение, как три начала термодинамики, поэтому его стали называть нулевым законом термодинамики. [c.31]


    Если две фазы с разл. 0 приведены в тепловой контакт друг с другом через пов-сть раздела и 0д > 0в, возникает поток теплоты от А к В, т. е. от более нагретой фазы к менее нагретой. При 0 = 0g тепловой поток отсутствует. Принцип термич. равновесия впервые сформулирован Дж. Блэком в кон. 18 в. В термодинамику он введен, однако, позднее первого и второго начал термодинамики, поэтому его часто называют нулевым началом термодинамики. [c.518]

    Для понимания химических явлений очень важны такие количественные характеристики, как температура, работа, внутренняя энергия и теплота. В данной главе будут рассмотрены все эти величины, а также связь между теплотой и работой как формами энергии. В начале главы обсуждается научное понятие температуры. Принцип, на котором основывается определение температуры, найден лишь после установления первого и второго законов термодинамики, и поэтому его называют нулевым законом. [c.13]

    Обычно В курсах термодинамики рассматривают три закона первый, второй и третий — они составляют основу изучаемой дисциплины. Однако сейчас все чаще вводят в изложение термодинамики закон термического равновесия, сформулированный Р. Фаулером в 1931 г., т. е. много позже установления основных законов. Поскольку нарушать установившуюся традиционную нумерацию основных принципов было крайне нецелесообразно, новый закон и получил мало удачное название нулевого. Он сформулировал так две системы, находящиеся в термическом равновесии с третьей системой, состоят в термическом равновесии друг с другом. На первый взгляд зто положение может показаться достаточно очевидным и даже тривиальным. Однако это не так. Этот закон нельзя отнести, например, к химическому равновесию. Так, аммиак (I система) и хлористый водород (II система) могут находиться в равновесии с азотом (III система). Однако между собой они будут, как известно, быстро реагировать. [c.32]

    Если говорить об истории вопроса, то эта теорема была выведена из целого ряда экспериментальных фактов и поэтому представляет собой, как и другие законы термодинамики, эмпирически установленный принцип. Вместе с нулевым, первым и вторым законами он образует систему основных аксиом, на которых покоится логическая схема термодинамики. [c.150]

    Тогда как абсолютные значения энтальпии в силу рассмотренных выше причин определить невозможно, вычисление абсолютных значений энтропии представляет собой вполне выполнимую задачу. Если при абсолютном нуле (О К) движение всех атомов прекращается, то при этой температуре все идеальные кристаллические вещества должны иметь нулевую энтропию. Один из принципов термодинамики заключается в том, что абсолютный нуль недостижим (хотя температуры, отстоящие всего лишь на 2-10 К от абсолютного нуля, были достигнуты). Недостижимость абсолютного нуля видна уже из того, что не существует холодильника, имеющего еще более низкую температуру, к которому могли бы перейти последние малые количества тепловой энергии. Принцип равенства нулю энтропии идеального кристаллического вещества при абсолютном нуле, который ьпервые был предложен Нернстом, иногда называют третьим законом термодинамики. В четком виде третий закон сформулировали Г. Льюис и М. Рэндалл  [c.101]


    Данная здесь интерпретация наклона кривых плавления действительна для равновесных кривых в общем случае. Фаза, которой на диаграмме соответствует область, лежащая от равновесной кривой в направлении высоких температур, всегда имеет более высокую энтропию, чем фаза, которой на графике соответствует область более низких температур в то же время фаза, которой на графике соответствует область, лежащая в направлении более высоких давлений, всегда имеет меньщий мольный объем. Эти выводы обобщаются уравнением (12.1), причем каждый из них является следствием второго закона термодинамики. Каждое утверждение полностью соответствует принципу Ле Шателье нагревание системы способствует протеканию в ней реакций, идущих с поглощением тепла (с увеличением энтропии), а сжатие системы способствует реакциям, приводящим к уменьшению давления (в результате уменьшения объема). Примеры фазовых переходов, происходящих в результате изменения соотношений между разными термодинамическими величинами, можно найти на рис. 12.11 так, фазовый переход лед VI-> лед VIII характеризуется большим значением AF и малым значением AS, тогда как переход лед VIII лед VII характеризуется большим значением AS и практически нулевым значением АУ. Эти соотношения отражены в наклоне соответствующих равновесных кривых. [c.395]

    Учесть наличие физико-химических процессов можно приближенно, приняв скорости их протекания бесконечными или нулевыми, При бесконечной скорости имеет место равновесное течение, а при нулевой — замороженное. При равновесном течении термодинамические и газодинамические параметры определяются с привлечением соотношений термодинамики равновесных процессов. Концентрации реагирующих компонентов в таких течениях определяются из закона действующих масс, а энергия колебательных степеней свободы вычисляется по формуле Эйнштейна. Энтропия в этом случае сохраняется неизменной вдоль струйки тока, а из принципа максимальной работы в случае обратимых процессов следует, что равновесное течение является предельным течением, когда удается получить в выходном сечении сопла максимальный импульс, скорость истечения, температуру и максимальное давление по сравнению с любым другим процессом истечения в сопле заданной геометрии и с заданными параметрами заторлюженного потока. [c.250]


Смотреть страницы где упоминается термин Нулевой принцип термодинамики: [c.38]   
Химическая термодинамика (1963) -- [ c.18 ]




ПОИСК







© 2025 chem21.info Реклама на сайте