Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие формы 1-го закона термодинамики

    Особый интерес представляет применение второго закона термодинамики в форме (П 1.9), т. е.закона энтропии к изолированной системе. Под таковой, вообще говоря, понимают систему, поставленную в воображаемые условия, исключающие возможность обмена с другими систе- [c.74]

    Другие формы 1-го закона термодинамики [c.19]

    Формулировки первого закона термодинамики. Внутренняя энергия и энтальпия. В 1840—1849 гг. Джоуль впервые с помощью разнообразных и точных опытов установил эквивалентность механической работы и теплоты AIQ = J, где J — механический эквивалент теплоты — постоянная, не зависящая от способа и вида устройств для превращения работы А в теплоту Q . В дальнейшем было доказано постоянство отношений других видов работы к теплоте, введено обобщающее понятие энергии и сформулирован закон сохранения и эквивалентности энергии при всевозможных взаимных превращениях различных видов энергии переход одного вида энергии в другой совершается в строго эквивалентных количествах в изолированной системе сумма энергий есть величина постоянная. Первый закон термодинамики является законом сохранения энергии в применении к процессам, которые сопровождаются выделением, поглощением или преобразованием теплоты в работу. В химической термодинамике действие 1-го закона распространяется на ту универсальную форму энергии, которая называется внутренней энергией. [c.73]


    Термодинамика основана на нескольких фундаментальных законах, обобщающих накопленный человечеством опыт наблюдений над превращениями энергии. Первый закон термодинамики (изложенный еще в гл. 4) известен как закон сохранения энергии. Это означает, что в таких процессах, как падение камня, плавление льда или химическая реакция, энергия не создается и не уничтожается. Она передается из одной части Вселенной в другую или превращается из одной формы в другую, но в сумме [c.171]

    Следует указать, что все положения 2-го закона термодинамики не могут быть доказаны на основе других законов, а были высказаны вначале в форме предположений. Эти предположения были затем доказаны всем опытом работы и наблюдений человечества и следствий, вытекающих из формулировок 2-го закона термодинамики. [c.87]

    Первый закон термодинамики, строго установленный Мейером (называемый в физике также законом сохранения энергии), утверждает, что энергия не исчезает и не создается, а переходит из одной формы в другую, другими словами, невозможно создать вечный двигатель первого рода . Воспользовавшись представлениями, развитыми в гл. 18 о функциях состояния [уравнения (174) и (180)], можно сформулировать первый закон термодинамики следующим образом внутренняя энергия системы есть функция состояния. Если бы внутренняя энергия не была функцией состояния, то при ее изменении в круговом процессе можно было бы получить дополнительное количество энергии, т. е. создать вечный двигатель первого рода , что противоречит первому закону термодинамики (одному из основных законов природы). [c.217]

    Опыт показывает, что в макроскопических системах изменение энергии наблюдается в форме теплообмена и в виде работы различного рода. При этом оказывается, что алгебраическая сумма теплоты и работы при различных способах перехода из одного состояния в другое сохраняет постоянную величину, а в циклическом процессе она равна нулю. На основании таких экспериментальных фактов в первом законе термодинамики постулируется связь этой суммы с изменением внутренней энергии системы — функции, зависящей только от состояния системы. [c.26]

    Это И есть знаменитое уравнение Клапейрона — Клаузиуса в применении к переходу жидкость пар. Впервые оно было получено в 1834 г. Клапейроном и явилось первым применением того, что мы теперь называем вторым законом термодинамики. В той же практически форме уравнение (1У.63) можно применить и к любому другому фазовому переходу . Мы этим займемся более подробно в гл. [c.97]


    Позднее, с открытием и исследованием электрической, лучи стой, химической и других форм энергии, постепенно в круг рассматриваемых термодинамикой вопросов включается и изучение этих форм энергии. Быстро расширялась и область практического применения термодинамических методов исследования. Уже не только паровая машина и процессы превращения механической энергии в теплоту исследуются на основе законов термодинамики, но и электрические машины, холодильные машины, компрессоры, двигатели внутреннего сгорания, реактивные двигатели. Гальванические элементы, а также процессы электролиза, различные химические реакции, атмосферные явления, некоторые процессы, протекающие в растительных и животных организмах, и многие другие исследуются не только в отношении их энергетического баланса, но и в отношении возможности, направления и предела самопроизвольного протекания процесса в данных условиях. Они исследуются также в отношении установления условий равновесия, определения максимального количества полезной работы, которая может быть получена при проведении рассматриваемого процесса в тех или иных условиях, или, наоборот, минимального количества [c.175]

    Химическая термодинамика изучает переходы химической энергии в другие формы — тепловую, электрическую и т. п., устанавливает количественные законы этих переходов, а также направление и пределы самопроизвольного протекания химических реакций при заданных условиях. [c.85]

    Закон Гесса является одним из выражений первого закона термодинамики, закона сохранения энергии. Закон сохранения энергии говорит, что если в каком-нибудь процессе энергия одного вида исчезает, то вместо нее появляется энергия в другой форме в количестве, строго эквивалентном первому. Разные формы энергии переходят друг в друга всегда в одинаковых соотношениях, и поэтому в изолированной системе общий запас энергии сохраняется неизменным. [c.56]

    Если система изолирована, т. е. не обменивается энергией с окружающей средой, то йи = 0 и энергия постоянна. Таким образом, первый закон термодинамики — это приложение более общего закона сохранения энергии к термодинамическим процессам. Энергия не исчезает и не появляется она только переходит из одной формы в другую. [c.13]

    Термодинамика изучает законы, которые описывают обмен энергией между изучаемой системой и внешней средой и, в частности, превращение тепловой энергии в другие формы энергий. Законы термодинамики очень важны для химии, так как они позволяют не только определить величину энергии, выделяемой или ноглош ае-мой в ходе реакции, но и предсказать характер изменений в исследуемой химической системе. [c.158]

    Термодинамика химическая — изучает химические реакции и фазовые переходы (растворение, испарение и кристаллизация чистых веществ и растворов и обратные им процессы), а также переход энергии из одной формы в другую и от одной части системы к другой в различных химических процессах и т. д. Важнейшими разделами этой науки являются термохимия, учение о химических и фазовых равновесиях, учение о растворах, теория электродных процессов, термодинамика поверхностных явлений и др. В основе Т. х. лежат общие положения и выводы термодинамики (первый закон термодинамики служит основой термохимии, второй закон термодинамики лежит в основе всего учения о равновесиях и др.). [c.135]

    Энергия, сообщенная системе (С), может быть тепловой или другой формой энергии, так как первый закон термодинамики справедлив для любых процессов. Если система поглощает энергию, то Q принимает положительное значение, т. е. знак <3 обратен знаку теплового эффекта реакции  [c.140]

    Термодинамика изучает законы, которые описывают обмен энергией между изучаемой системой и внешней средой и, в частности, превраш,ение тепловой энергии в другие формы энергий. [c.50]

    Термодинамика — наука, которая изучает общие законы взаимного превращения энергии из одной формы в другую. В химической термодинамике эти законы применяются к рассмотрению химических и физико-химических процессов. В частности, химическая. термодинамика количественно определяет тепловые эффекты различных процессов (химических реакций, растворения, плавления и т. п.) выясняет принципиальную возможность самопроизвольного течения химических реакций и условия, при которых химические реакции могут находиться в состоянии равновесия. [c.33]

    Второй закон термодинамики характеризует направление естественных (необратимых) процессов и отмечает качественное отличие теплоты от других форм передачи энергии. [c.4]


    Первый закон термодинамики утверждает, что при превращении одной формы энергии в другую общее количество энергии сохраняется. На какие-либо другие ограничения этого процесса первый закон не указывает. Однако известно, что многие процессы характеризуются естественным направлением как раз с этим и связан второй закон. Например, газ расширяется в пустоту, но обратный процесс не происходит никогда, хотя это и не нарушило бы первый закон. Он не был бы нарушен и в том случае, если бы стержень с одинаковой температурой по всей длине стал горячим на одном конце и холодным на другом, но мы знаем, что это никогда не случится. Второй закон устанавливает критерий, позволяющий предсказать, может ли данный процесс идти самопроизвольно или нет, и поэтому он имеет большое значение для химии. [c.48]

    Первый закон термодинамики это закон сохранения энергии. Энергия мира остается постоянной (Клаузиус). Поэтому если некоторая система теряет энергию, то в окружающей среде должно наблюдаться соответствующее увеличение ее. Кроме того, когда энергия одного вида превращается в энергию другого вида, должно существовать количественное соотношение между этими величинами, независимое от систем и определяемое только формами превращающейся энергии. Известные опыты Джоуля и Роуланда ставились, чтобы подтвердить полное превращение механической энергии в тепло в адиабатической системе, т. е. в системе, которая не может обмениваться теплом с окружающей средой. Единицей работы является эрг, т. е. работа, совершаемая силой в 1 дин на пути в 1 см. Единица тепла, используемая в химической термодинамике, называется калорией она равна 4,1840-10 эрг. [c.234]

    Значение этого крайне простого следствия первого закона термодинамики состоит в том, что оно позволяет косвенным образом вычислить изменение теплосодержания при реакциях, для которых это трудно сделать путем непосредственных измерений. Если цикл складывается из 5 процессов, то достаточно измерить АЯ для 5—1 процессов. Другой формой выражения этого [c.257]

    Первый закон термодинамики—это закон о сохранении энергии и об эквивалентности работы и теплоты. Работа и теплота представляют собой разные формы энергии и переходят одна в другую. Система может поглощать тепло из внешней среды или выделять его. В процессе взаимодействия с окружением система может совершать работу. Первый закон постулирует, что существует функция Е (иногда ее обозначают как U), называемая внутренней энергией, которая определяется только состоянием системы в данный момент и не зависит от ее предыстории. Согласно первому закону, Е может измениться только в процессе передачи энергии в виде теплоты или при совершении работы. Другими словами, этот закон утверждает, что энергию нельзя ни создать, ни уничтожить. [c.201]

    Все эти физические явления и процессы в принципе уже давно известны и относятся к обычным методам получения эиергии. В отличие от атомного реактора, в котором энергия получается как результат перехода одной формы материи в другую, рассмотренные выше методы характеризуются уже переходом одной формы энергии в другую согласно первому закону термодинамики. [c.15]

    Таким образом, различие между представителями животного и растительного мира состоит в том, что у организмов, имеющих хлорофилл, ассимиляция энергии и субстрата совершенно обособлена. Последний состоит главным образом из углерода, водорода, азота, фосфора и серы, которые на нашей планете находятся преимущественно в предельно окисленном состоянии и для синтеза растительной ткани должны быть предварительно восстановлены посредством адсорбированной хлорофиллом солнечной энергии. Гетеротрофные организмы, наоборот, не способны сами восстанавливать неорганические вещества и вынуждены потреблять растительную пищу, чтобы получить необходимые для построения своего организма вещества и энергию. Более того, отрицательная энтропия, воспринятая с высокоорганизованной растительной пищей, служит не только для выполнения механической, осмотической и электрической работы, соответственно табл. 10.1, но также для компенсации тепловых потерь, происходящих в процессе превращения одних форм энергии в другие ). Выражение обмен веществ , которое употребляется в связи с указанным процессом, у неспециалистов может создать впечатление, будто сущность жизненных процессов заключается в обмене материи между пищей и организмом. Но в действительности наш вес постоянен, и если считать, что все атомы и молекулы неразличимы, то это относится и к углероду, кислороду и азоту, составляющим продукты обмена веществ. В таком случае, почему обмен веществ Ряд лет содержание энергии считалось чуть ли не самоцелью пищевых продуктов и в меню указывалось, сколько калорий содержится в том или ином блюде, словно человек или животные могут вопреки второму закону термодинамики изотермически превращать тепло Кроме того, как справедливо отмечает Шредингер [8], [c.471]

    Первый закон термодинамики яиляется следствием всеобщего закона сохранения материи и энергии. Закон сохранения энергии утверждает, что энергия не создается и не разрушается, а лишь прегращается из одной формы в другую. Из этого следует формулировка первого закона термодинамики  [c.15]

    Третий закон термодинамики может быть выражен и в другой форме  [c.242]

    Рассмотрение механизма образования непрерывной жидкой нити молено начать с изучения условий ее стабильности. Ограниченный объем жидкости, если на него не действует внешнее силовое поле (в том числе и гравитационное), принимает форму шара, поскольку на границе раздела жидкость — окружающая среда существует свободная поверхностная энергия (поверхностное натяжение), значение которой стремиться по законам термодинамики к минимуму. Тело любой другой формы при том же объеме жидкости будет иметь большую поверхность и соответственно большую поверхностную энергию. [c.235]

    Соотношения (2) и (3) являются по существу специфическими формами закона Фика, для которого уравнение (1) можно рассматривать как общую формулировку. Закон Фика, справедливость которого была показана в большом числе экспериментов, устанавливает, что поток каждого компонента пропорционален градиенту его концентрации. Однако в экспериментах с мембранами, особенно с биологическими, поток каждого компонента во многих случаях зависит также и от потоков других компонентов, т.е. потоки оказываются связанными (взаимодействующими). Как раа такое поведение потоков и предсказывает термодинамика необратимых процессов. [c.137]

    Для биологических систем существенна еще одна важная особенность изменений энтропии Согласно второму закону термодинамики, при химических реакциях или физических процессах энтропия Вселенной увеличивается. Из этого закона, однако, не следует, что возрастание энтропии должно происходить обязательно в самой реакционной системе оно может произойти в любом другом участке Вселенной. В живых организмах метаболические процессы, т. е. те превращения, которым подвергаются в них пищевые вещества, не ведут к возрастанию внутренней неупорядоченности, или энтропии самих организмов. Из повседневных наблюдений мы знаем, что любой организм, будь то муха или слон (т. е. в нашем понимании система ), при всех процессах жизнедеятельности сохраняет присущую ему сложную и упорядоченную структуру. В результате процессов жизнедеятельности возрастает энтропия не самих живых организмов, а окружающей среды. Живые организмы сохраняют внутреннюю упорядоченность, получая свободную энергию в виде пищевых веществ (или солнечного света) из окружающей среды и возвращая в нее такое же количество энергии в менее полезной форме, главным образом в форме тепла, которое рассеивается во всей остальной Вселенной. [c.408]

    Биохимические реакции в живых организмах подчиняются законам химии и физики и принципам химической термодинамики, науке о взаимосвязи между химической и другими формами энергии тепловой, электрической, лучистой, механической и т. д. [c.16]

    Из первого закона термодинамики следует, что вечный двигатель первого рода, т. е. двигатель, получающий всю или часть энергии из ничего, принципиально не может быть сконструирован. Таким образом, общая энергия полностью изолированной системы остается постоянной. (Если система не изолирована, общая энергия ее может изменяться.) Мы обозначим эту общую энергию Е. Она может слагаться из теплоты (которая, как показал Рамфорд, представляет собой одну из форм энергии), из механической или химической энергии или, временами, из других форм энергии. Термодинамика как наука выросла на изучении процессов, в ходе которых теплота при помощи соответствующих машин частично превращается в работу. Обозначим количество полученной системой теплоты через Р, а произведенную работу — через тогда можно составить простое уравнение [c.153]

    Первый закон термодинамики устанавливает эквивалентность различных форм энергии, в частности, внутренней энергии, теплоты и работы. Если система изолирована от окружающего мира, то ее внутренняя энергия остается неизменной. С точки зрения первого закона возможны и равновероятны любые процессы, в которых вместо исчезнувшего одного вида энергии появится эквивалентное количество другого вида. Так, первому закону не противоречило бы поднятие груза или закручивание какой-либо пружины за счет внутренней энергии окружающей среды. Почему, в самом деле, камень, лежащий на земле, не может подняться на какую-то высоту за счет охлаждения окружающего воздуха Однако не поднимается Переход теплоты от менее нагретого тела к более нагретому означал бы лишь перераспределение энергии внутри системы и также не противоречил перврму закону. Однако известно, что сосуд с водой никогда не закипит на холодной плите. Иными словами, первый закон ничего не говорит о возможности и вероятности того или иного процесса, связанного с превращением энергии или ее перераспределением. [c.64]

    Из первого закона термодинамики — энергия не возникает из ничего и не исчезает, а только превращается из одной формы в другую в эквивалентных количествах — вытекает закон Гесса (1840), который в современной формулировке гласит, что изменение энтальпии (при р=пост.) зависит только от вида и состояния исходных веществ и продуктов рвакции и не зависит от пути перехода. [c.124]

    Энергия — основная физическая величина. Математический аппарат большинства разделов теоретической физики, включая термодинамику, основан на различных формах закона сохранения энергии. Однако важнейшая особенность макроскопических систем, которые рассматриваются в термодинамике, состоит в том, что энергию макроскопической системы невозможно непосредственно измерить. Различные физические методы позволяют только определять изменения энергии отдельных частиц системы — атомов, молекул, ионов. Однако не существует никаких методов непосредственного измерения энергии системы как целого. Изменение энергии макроскопической системы определяют в виде теплоты или работы. Первоначально они рассматривались независимо. Поэтому для макроскопической системы сам факт существования внутренней энергии макроскопической системы как некоторой физической величины удалось установить только в середине XIX в., причем для этого потребовалось открыть ранее неизвестный закон природы — первое начало термодинамики. Впоследствии возникла необходимость использовать и другие неизмеряемые величины — энтропию, химический потенциал и т. п. Широкое применение в математическом аппарате термодинамики непосредственно не измеряемых величин является особенностью термодинамики как науки и сильно затрудняет ее изучение. Однако каждая неизмеряе-мая величина в термодинамике точно определена в виде функций измеряемых величин и все окончательные выводы термодинамики можно проверить на опыте. При этом для описания свойств системы используют специальные термодинамические переменные (или термодинамические параметры). Это физические величины, с помощью которых описывают явления, связанные с взаимными превращениями теплоты и работы. Все это макроскопические величины, выражающие свойства больших групп молекул. Не все эти величины можно непосредственно измерить. [c.6]

    Тем самым учитывается как полная преврао емость механической и электрической энергии в другие формы, так и ограничения, определяемые вторым законом термодинамики (работа может производиться лишь до достижения термодинамического равновесия тела, обладающего внутренней энергией, с окружающей средой). Другими словами, учитывается тот факт, что в реальных процессах, которые всегда необратимы, подведенная энергия не теряется, снижается лишь ее пригодность к совершению работы из-за безвозвратных потерь эксергии. [c.53]

    С учетом этого обстоятельства Каратеодори в 1909 г. предложил формулировку второго закона термодинамики, альтернативную традиционной (клаузиусовской) формулировке, сущность которой состоит в утверждении существования интегрирующего множителя для пфаффовой формы eQ. Преимущество предложенной Каратеодори формулировки состоит в том, что с ее помощью можно провести последовательное математическое изложение термодинамики, не прибегая к таким дополнительным понятиям, как идеальный газ или цикл Карно. С другой стороны, изложение основ термодинамики становится весьма абстрактным. В связи с этим функция энтропии окутана некоторой дымкой абстрактности, в результате чего у читателя исчезает ощущение реальности в использовании этого понятия. [c.25]

    Хотя клетки используют освобождающуюся в процессе катаболизма энергию в сопряженных эндергонических процессах синтеза анаболизм), а также запасают ее в синтезированных продуктах, все же какая-то часть энергии непрерывно рассеивается в виде тепла вследствие неидеального сопряжения между биохимическими реакциями, при переходе химргаеской энергии в другие формы энергии (например, в механическую или электрическую) и т. д. В результате энтропия биосферы возрастает. Это — следствие второго закона термодинамики для любой замкнутой системы. Таким образом, жизнь на Земле неизбежно должна была бы прекратиться, не будь непрерывного притока лучистой энергии извне и фотосинтеза, который использует эту энергию. [c.314]


Смотреть страницы где упоминается термин Другие формы 1-го закона термодинамики: [c.80]    [c.9]    [c.8]    [c.234]    [c.47]    [c.559]    [c.18]    [c.205]    [c.373]   
Смотреть главы в:

Термодинамика физико-химических процессов -> Другие формы 1-го закона термодинамики




ПОИСК





Смотрите так же термины и статьи:

Закон термодинамики



© 2025 chem21.info Реклама на сайте