Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электромагнитное излучение единицы измерения

    Единицы измерения длины волны, наиболее часто используемые в различных диапазонах электромагнитного излучения [c.20]

    Коэффициент поглощения г называют молярным, если концентрация веш,ества выражена в моль/л. Он представляет собой оптическую плотность 1 М раствора при длине кюветы 1 см. Величина 8 измеряется в л/(моль-см), но принято приводить значение 8 без указания единиц измерения. Если концентрацию вещества выражают в процентах, то вместо 8 используют удельный коэффициент поглощения, численно равный оптической плотности 1%-ного раствора при /=1 см, и обозначают E u Коэффициент поглощения обычно используют для сравнительной оценки чувствительности фотометрических реакций и методик чем выше значение 8, тем меньшую концентрацию вещества можно определить. Постоянство значений г при разных концентрациях вещества обычно свидетельствует о соблюдении закона поглощения в определяемом интервале концентраций, т. е. е не зависит от концентрации и длины кюветы и характеризует степень поглощения электромагнитного излучения. Метод анализа называют фотометрическим, когда измеряют степень поглощения веществом излучения сравнительно широкого участка спектра, выделенного с помощью светофильтров, с помощью фотоэлектроколориметров. [c.23]


    Энергия излучения ( )—энергия, переносимая электромагнитными волнами. Единица измерения — джоуль Дж). [c.7]

    Во всех спектрохимических измерениях важно определить амплитуду и частоту электромагнитного излучения. К сожалению, правильное измерение обоих величин возможно только для излучения микроволновых частот или ниже в связи с ограниченными частотными характеристиками детекторов. В области более высокой частоты переменной, которую легко измерить, является мощность излучения (Р), пропорциональная квадрату амплитуды волны. Мощность излучения очень важна в спектрохимии, поскольку она является количеством энергии, передаваемой в форме электромагнитного излучения, за единицу времени. Если энергия фотона равна Е, мощность излучения можно выразить с помощью соотношения [c.610]

    Гамма-лучи представляют собой проникающие электромагнитные колебания с длиной волны приблизительно от 0,005 до 0,4 А и с энергией 0,05—5 Мэе. Они распространяются со скоростью света их проникающая способность гораздо выше, чем у самого жесткого рентгеновского излучения длина пробега в воздухе составляет несколько километров. Гамма-лучи в отличие от альфа- и бета-излучения ионизируют материю косвенно посредством электронов, которые при столкновении с фотонами гамма-излучения получают часть их энергии и отрываются от атомов. Эти электроны при столкновениях с атомами и вызывают ионизацию. Бета-распад часто сопровождается гамма-излучением. Методы определения и измерения интенсивности радиоактивного излучения основаны на его ионизирующем действии. На этом же явлении основаны и принятые единицы дозы разных видов излучения. [c.644]

    Длины волн электромагнитного излучения изменяются в очень щи-)оких пределах, поэтому для их измерения используют разные единицы. 3 области рентгеновского излучения, а также в ультрафиолетовой и ви- [c.365]

    Частота V — число раз в секунду, когда электрическое (или магнитное) поле достигает своего максимального положительного значения. Для измерения частоты используют единицу системы СИ — герц (1 Гц = = 1 с ) или кратные ей мегагерц (1 МГц = МО Гц), гигагерц (1 ГГц = = МО Гц). Длина волны электромагнитного излучения связана с его частотой соотношением  [c.199]

    На основании этих зависимостей создана энергетическая система световых единиц, в которой специфические световые измерения увязы- ваются с единицами измерения абсолютной системы Л КС. Эта система охватывает всю среднюю область спектра электромагнитных излучений, включающую инфракрасные излучения с длинами волн от 0,34 мм до 0,77 мк, видимые излучения — от 0,77 до 0,38 мк и ультрафиолетовые излучения — от 0,38 до 0,1 мк. Наиболее важные единицы измерения энергетической фотометрии следующие  [c.775]


    Электромагнитный спектр охватывает огромную область частот, и спектроскописты, работающие в различных областях спектра, сочли удобным ввести свои собственные единицы измерения. Эти единицы выбирались обычно таким образом, чтобы числа имели разумные величины и не приходилось включать число 10 в высоких степенях. В рентгеновской, ультрафиолетовой и видимой областях спектроскописты пользуются длиной волны излучения и измеряют ее в ангстремах (1А= 10 с>г). В ближней и дальней инфракрасной областях для измерения длины волны используют микроны (1ц = 10 см). Однако в инфракрасной области часто оказывается удобнее иметь дело с волновым числом, т. е. числом длин волн в одном сантиметре. Волновое число равно частному от деления истинной частоты на скорость света, т. е. [c.45]

    С другой стороны, применять эллиптичность в качестве переменной не рекомендуется из-за того, что она измеряется в угловых единицах, а это может привести к смещиванию величин кругового дихроизма и оптического вращения. Хотя оба эти явления представляют собой две взаимосвязанные стороны взаимодействия электромагнитного излучения с материей, они не идентичны по смыслу. С помощью кругового дихроизма изучают энергию взаимодействия, тогда как вращательная дисперсия связана с движением электронов. Следовательно, нет оснований для использования одинаковых единиц при измерении этих двух эффектов. [c.105]

    По классической теории света видимое и невидимое излучение отождествляют с электромагнитными волнами определенной длины. Волны, длиной от тысяча метров и более, понижающиеся до нескольких сантиметров, представляют собой радиоволны. Область между 1 см и 0,001 мм, представляющая тепловое и инфракрасное излучение, имеет практическое применение. Для измерения волн еще меньшей длины принята меньшая единица — микрон (, ), равный 0,001 мм. Ближайшая инфракрасная часть спектра, находящаяся сразу за видимой красной областью, характеризуется длинами волн от 1,00 до 0,80 (J . Отсюда по направлению к более коротким волнам мы проходим через все цвета спектра красный, оранжевый, желтый, зеленый, синий и фиолетовый, приблизительно с длинами волн, соответственно равными 0,65 р, 0,60 0,58 1 , 0,52 м, 0,45 I и 0,40 л. Для того чтобы избежать дробных значений для измерения относительно коротких волн, применяют меньшие еди- [c.356]

    В низкочастотной области спектра для характеристики электромагнитного излучения и измерения энергии используется большое число различных елиниц. Полезно поэтому сопоставить все единицы [c.11]

    РАДИОАКТИВНОСТИ ИЗМЕРЕНИЯ — измерения, имеющие целью определение активности радиоактивных препаратов. Обычно измеряют или абсолютную активность препарата, т. е. число актов распада в единицу времени (практич. единицей абс, активности является кюри), или же количество испускаемых препаратом частиц, регистрируемых счетной установкой в единицу времени (выражаемое числом импульсов в единицу времени) последняя величина при прочих равных условиях обычно пропорциональна абс. активности препарата. Следует иметь в виду, НТО акт а- или -распада может сопровождаться также у- или рентгеновским излзгчением. Поэтому в принципе измерение активности одного и того же радиоактивного изотопа возможно как по его корпускулярному (а- или -), так и по электромагнитному излучению. В химич. практике чаще всего производят измерения активности радиоактивных изотопов по их а-, - и 7-излучению. [c.225]

    Предположение 46. На основании уравнений Максвелла можно показать, что магнитный диполь, момент которого синусоидально изменяется со временем, будет испускать излучение, для которого направление магнитного поля лежит в той же плоскости, что и направление диполя. Напряженность поля этого излучения имеет точно такую же величину, как и поле излучения осциллирующего электрического диполя такой же величины. Это означает, что амплитуда т в (А-56) может соответствовать как электрическому, так и магнитному дипольному моменту, причем единицами измерения будут соответственно электростатические или электромагнитные единицы. [c.422]


Смотреть страницы где упоминается термин Электромагнитное излучение единицы измерения: [c.151]    [c.183]    [c.11]   
Основы квантовой химии (1979) -- [ c.343 , c.344 ]




ПОИСК





Смотрите так же термины и статьи:

Единицы измерения

Электромагнитное излучение



© 2025 chem21.info Реклама на сайте