Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Область между фазами поверхности

    Фазовые превращения в бинарной системе могут быть представлены трехмерной диаграммой, координатами которой являются температура, давление и мольная доля. На рис. 4.1 показана подобная диаграмма для бинарной системы в области, где существуют только пар и единственная жидкая фаза. Полная диаграмма для бинарной системы будет включать область равновесия между твердыми и жидкими фазами, а также, возможно, область частичного смешивания двух жидкостей. Правая сторона диаграммы на рис. 4.1 — это просто график зависимости давления пара от температуры для толуола, а левая сторона — такой же график для бензола. Верхняя искривленная поверхность внутри параллелепипеда показывает общее давление пара как функцию температуры и мольной доли толуола в жидкости она обозначена буквой I. Нижняя искривленная поверхность, на которую нанесены пунктирные линии и большая часть которой скрыта, изображает состав пара, равновесного с жидкостью, и обозначается буквой и. Пунктирные линии являются кривыми давления пара для растворов, в которых мольная доля толуола равна 0,2, 0,4, 0,6 и 0,8. При условиях, соответствующих точкам выше поверхности I, существует только жидкая фаза, а в точках ниже поверхности V — только пар при условиях, соответствующих точкам в области между этими поверхностями, пар и жидкость сосуществуют. [c.107]


    При изменении содержания компонента В в смеси равновесные составы будут располагаться на других хордах равновесия. Последние перемещаются от стороны треугольника АС до критической точки К, соответствующей исчезновению поверхности раздела между фазами при их расслаивании, когда система становится гомогенной. Если концы хорд равновесия соединить так называемой бинодальной кривой, то она ограничит область площади треугольника, все точки которой соответствуют двухфазным (расслаивающимся) системам эта область является рабочей частью треугольной диаграммы. Остальная область, вне кривой, соответствует гомогенным системам, для разделения которых экстракция неприменима. [c.362]

    Область между фазами поверхности [c.214]

    Механизм гетерогенных процессов сложнее гомогенных, так как взаимодействию реагентов, находящихся в разных фазах,, предшествует их доставка к поверхности раздела фаз и массообмен между фазами. Гетерогенный процесс представляет собой совокупность взаимосвязанных физико-химических явлений и химических реакций. Для количественной характеристики сложного технологического процесса в ряде случаев допустимо расчленение era на отдельные стадии и анализ каждой из них. Такой анализ позволяет, например, установить, в какой области— диффузионной или кинетической — идет процесс, и при расчете пренебречь той стадией, которая оказывает малое влияние, если только скорости диффузии и химических реакций не соизмеримы. [c.153]

    Самое общее определение пленки вообще совпадает с определением поверхности разрыва это неоднородная область между фазами (а) и (Р). Правда, пленка обладает рядом специфических особенностей она обычно толще, чем поверхностный слой, и может содержать внутри себя однородную область, а также компоненты, отсутствующие в окружающих фазах. В отличие от поверхности разрыва пленка может существовать и в том случае, когда фазы (а) и (Р) тождественны между собой. [c.260]

    Контакт двух фаз на идеальной модели происходит по геометрической плоскости. По Варду и Бруксу [112], существует очень тонкий (толщиной в несколько ангстремов) слой, который является переходной областью между двумя фазами. На обеих сторонах этого слоя имеется некоторый конечный перепад между концентрацией растворенного вещества в одной фазе и равновесной концентрацией в другой. Учитывая возможную величину этого перепада и толщину слоя, Вард и Брукс приняли допущение, что в этом слое коэффициент диффузии О гораздо меньше, чем в основной массе жидкости. Таким образом, прохождение молекул через этот слой связано с преодолением дополнительных сопротивлений. Дэвис [22] также сообщает, что в диссоциированных растворах подвижность ионов на поверхности стыка значительно меньше (в 10 раз), чем в основной массе жидкости. [c.52]


    Роль концентрации в активной фазе здесь играет двухмерная концентрация молекул, сорбированных на активной поверхности Внутридиффузионное торможение реакции здесь не учитывается. Как и в кипящем слое, перенос вещества движущимися твердыми частицами не играет роли, если реакция протекает во внешнедиффузионной области или если частицы катализатора обладают малой удельной поверхностью, плохо сорбирующей реагент. В кинетической области устанавливается сорбционное равновесие между фазами Ср = Скат// складывая (Л И.149) и ( 11.150), приходим в этом случае к уравнению [c.319]

    Зависимость удельной поверхности частиц от их размера для разных дисперсных систем показана на рис. 4 [12]. Кривая 5уд=/(г) имеет вид равносторонней гиперболы, она асимптотически приближается к оси абсцисс в области грубодисперсных систем. Слева кривая обрывается, когда коллоидные частицы достигают размеров молекул, и поверхность раздела между фазами исчезает. Точно установить границу между коллоидной и молекулярной степенью дисперсности нельзя, она может быть сдвинута в ту или иную сторону в зависимости от химической природы вещества. [c.19]

    Переменная скорость плавления означает, что твердая фаза подвергается или деформации, или вращению, или тому и другому вместе. Твердые полимеры, в частности в виде пробки спрессованных гранул или порошков (как это обычно наблюдается в процессах переработки), можно считать деформируемыми. Расплав, образующийся в очаге плавления, проникает внутрь пустот между твердыми частицами пробки, позволяя им скользить и перестраиваться в области, прилегающей к поверхности раздела фаз. Физическая сущность деформации твердой пробки состоит в следующем. Медленно дефор- [c.282]

    Хотя в приведенном определении адсорбция отнесена к геометрической поверхности, не имеющей толщины (что особенно удобно при выводе уравнений), фактически, конечно, граница между фазами представляет собой очень тонкий слой (поверхностный слой), в котором все свойства отличаются от свойств объемных фаз и изменяются не скачкообразно, а непрерывно. На рисунке 44, например, показано возможное изменение концентрации вблизи границы раздела концентрация компонента молсет быть как выше концентраций в обеих фазах (1), так и ниже (2) или иметь промежуточное значение (3). Эта область (на рисунке между линиями тп и т п) может рассматриваться как поверхностный слой. Таким образом, изучая границу раздела фаз, нужно рассматривать состояние трех фаз двух объемных и одной поверхностной. [c.207]

    Давление Др и общая сила, сжимающая поверхности пленки Р = л.г Ар могут иметь различную природу в зависимости от типа пленок (жидкие прослойки между твердыми поверхностями, смачивающие пленки на твердых подложках, свободные симметричные пенные и эмульсионные пленки и др.), от характера граничных условий в области соприкосновения пленки с макроскопической фазой, а также от степени отклонения от равновесности. Так, во всех упомянутых случаях большую или меньшую роль играет расклинивающее давление П для тонких пленок, удаленных от состояния термодинамического равновесия, величина Ар может практически целиком определяться значением П. Для систем с легкоподвижными границами раздела между дисперсной фазой и дисперсионной средой роль Ар может играть капиллярное давление, особенно существенное для сравнительно толстых пленок и для тонких пленок, приближающихся к состоянию термодинамического равновесия. Сближение твердых частиц, разделенных прослойкой среды, может происходить под действием внешней силы f, например силы тяжести. [c.255]

    Гетерогенность или многофазность, выступает в коллоидной химии как признак, указывающий на наличие межфазной поверхности, т. е. поверхностного слоя — основного объекта этой науки. Коллоидная наука концентрирует внимание в первую очередь на процессах и явлениях, происходящих на межфазных границах, в пограничных слоях, которые не просто определяют граничную область между фазами, но и представляют коллоидное состояние вещества. Гетерогенность — важнейший признак объектов коллоидной химии. Именно этот признак, определяю- [c.11]

    Следующие (качественные рассуждения могут служить иллюстрацией причин зависимости способности ПАВ к стабилизации эмульсий прямого или обратного типа от величины их ГЛБ. Разделим условно поверхность разрыва между фазами и соответственно межфазное натяжение а капель эмульсии на две части (o = Ti+i(i2) первую — а, связанную с областью контакта полярных групп с водой, и вторую — СТ2, соответствующую области контакта углеводородных цепей молекул ПАЙ масляной фазой. Эти две величины условно могут быть отож- [c.288]

    Полимеры имеют характерные особенности, резко отличающие их от низкомолекулярных соединений. Полимеры существуют только в конденсированных состояниях. У них возможны только два агрегатных состояния - твердое и жидкое - и два фазовых состояния - кристаллическое и аморфное. Газообразное состояние из-за высокой энергии когезии, как уже отмечалось выше (см. 5.2), у полимеров не существует. Образование кристаллической структуры у полимеров не сопровождается возникновением поверхности раздела между фазами (за исключением монокристаллов), так как макромолекулы обычно переходят из одной фазы в другую. В таком полимере, следовательно, нет отдельной кристаллической фазы в термодинамическом понимании. В целях устранения возможных противоречий для полимеров часто вместо термина фаза в структурном понимании используют термины кристаллические и аморфные участки (части, области). [c.133]


    Сплошными линиями показано положение гиббсовских разделяющих поверхностей, пунктиром — границы переходной области между пленкой и фазой  [c.24]

    Гетерогенная каталитическая реакция наблюдается всегда, когда скорость химической реакции возрастает благодаря присутствию поверхности раздела двух фаз. Поверхности твердых тел особенно важны как гетерогенные катализаторы для реакций между газами или между газом и жидкостью. Проблемы, возникшие при попытках использовать эти поверхности для получения химических продуктов с большей скоростью и с большей селективностью, оказались захватывающими с точки зрения химиков и физиков. Можно без преувеличения сказать, что большинство усовершенствований, внесенных при использовании этих катализаторов для получения продуктов в крупном масштабе, явилось результатом тщательно продуманных и широко поставленных опытов, а не следствием применения химической теории. Широта области, охватываемой гетерогенным катализом, показывает масштаб этих усилий как указано в табл. 9 (см. стр. 152), к этому типу катализа относятся синтез аммиака из элементов и его окисление в окись азота и азотную кислоту, окисление двуокиси серы в трехокись и углеводородов в полезные кислородсодержащие продукты, различные реакции перегруппировки, циклизации, разложения и полимеризации, которые имеют место при крекинге нефти, синтез углеводородов, спиртов и альдегидов [c.18]

    Начнем исследование с выбора маленького межфазного слоя, математические границы которого движутся вместе с жидкостью в обычном гидродинамическом смысле. Рис. 2 надо представить себе математически вырезанным из середины рис. 1. Толщина Аг мала в лабораторной шкале, но достаточно велика в. микроскопической, так что верхняя поверхность (в дальнейшем называемая потолком ) лежит далеко внутри области, где преобладают свойства фазы И, тогда как нижняя поверхность ( пол ) также лежит достаточно далеко внутри фазы I. Над полом и потолком реализуются указанные значения плотностей р и сдвиговых вязкостей объемных фаз. Таким образом, А о достаточно велика, чтобы охватить всю анизотропию межфазной области. В данный момент я не принимаю никакого условия относительно положения контрольной плоскости 2 = 0 внутри области между полом и потолком. [c.45]

    Соприкосновение фаз неизбежно приводит к обмену между ними веществом и энергией с установлением фазового равновесия. В случае электрохимических процессов из фазы в фазу переходят не нейтральные молекулы, а электрически заряженные частицы, например, обмен катионами металла между электродом и раствором. При этом в поверхностных слоях каждой из фаз возникают электрические заряды, равные по величине, но противоположные по знаку. Образуется так называемый двойной электрический слой, разность потенциалов между обкладками которого вызывает скачок потенциала на границе между фазами. Скачок потенциала и двойной электрический слой могут возникнуть и на поверхности неметаллического твердого тела, даже на поверхности коллоидной частицы, например, за счет избирательной адсорбции из раствора ионов одного знака. В отличие от не имеющей толщины межфаз-ной границы, межфазная область в электрохимических системах имеет некоторую протяженность. Существуют две межфазные области - одна протянувшаяся от электрода в сторону электролита и отличающаяся от основной массы раствора, и другая, протянувшаяся от поверхности электрода внутрь него, отличающаяся от основной массы электрода. [c.103]

    Гидродинамические особенности турбулентного потока в канале были рассмотрены в гл. 3. Здесь же следует отметить влияние гидродинамических условий на перенос вещества. В пограничном слое толщиной 8 (рис. 15-2) происходит резкое, близкое к линейному изменение концентраций поскольку в этой области потока скорость процесса определяется молекулярной диффузией, роль конвективной диффузии мала. Это объясняется тем, что на границе раздела фаз усиливается тормозящее действие сил трения между фазами и сил поверхностного натяжения на границе жидкой фазы. Образование гидродинамического пограничного слоя вблизи поверхности раздела фаз ведет к возникновению в нем диффузионного пограничного слоя толщиной 5д, обычно не совпадающей с 5 . В ядре потока массоперенос осуществляется в основном турбулентными пульсациями, поэтому концентрация распределяемого вещества в ядре потока практически постоянна. Как отмечалось выше, перенос вещества движущимися частицами, участвующими в турбулентных пульсациях, называют турбулентной диффузией. Перенос вещества турбулентной диффузией описывается уравнением, аналогичным уравнению (15.14а)  [c.16]

    Для конкретности представим, что рассматривается изменение локальной плотности при переходе от одной фазы к другой, тогда величины Г< ) и Г<И представляют собой обычные гиббсовские избытки массы на единицу поверхности соответственно слева от плоскости А А и справа от плоскости ВВ. Очевидно, значения Г( > и Г<3) будут зависеть от положения поверхностей А А и ВВ. Если эти поверхности совпадают друг с другом, то мы имеем дело с методом Гиббса. Однако можно построить и более общий вариант теории, в котором положение поверхностей А А и ВВ является произвольным и наряду с реальной неоднородной областью между ними рассматриваются избытки соответствующих свойств слева и справа от этих поверхностей. [c.39]

    Учитывая трудности, встречающиеся при разработке теории стационарного и нестационарного пламени (см. 4 главы 5.и пункт в 4 главы 7), Харт и Мак Клюр в работе ввели в рассмотрение феноменологические коэффициенты, учитывающие чувствительность скорости пламени к изменениям давления и температуры, предположив, что пламя является плоским, гомогенным и бесконечно тонким и располагается в газе на некотором расстоянии от поверхности конденсированной фазы. Они предположили также, что единственным процессом, который протекает в области между поверхностью пламени и поверх- [c.300]

    Выше отмечалось существенное влияние температурного режима на ход химической реакции. Наиболее высокая температура в реакторах с твердой фазой будет в центральной части аппарата. Теплообмен при наличии охлаждающих стенок может осуществляться следующим образом между внутренней областью частицы (порами) и ее наружной поверхностью между наружной поверхностью катализатора и потоком газа по слою катализатора между соприкасающимися зернами через наружные охлаждаемые стенки аппарата. [c.183]

    В данной главе монографии при построении математических моделей тепло- и массообменных процессов в псевдоожиженном слое предполагалось, что тепло- и массообмен между твердыми частицами и омывающим их потоком газа описывается при помощи обыкновенных дифференциальных уравнений, вид которых считался известным. Однако определение вида такой зависимости представляет собой сложную самостоятельную задачу. Тепло- и массообмен между твердой частицей и омывающим ее потоком газа в псевдоожиженном слое складывается из двух стадий переноса тепла или массы в газовой фазе в области, прилегающей к поверхности твердой частицы, и переноса тепла (или массы) внутри твердой частицы. [c.253]

    Здесь расстояния х и а относятся к плоскостям А и В, расположенным достаточно далеко от разделяющей поверхности там, где поведение растворов определяется свойствами объемных фаз. Общее количество компонента i в области между плоскостями А и 3 равно [c.62]

    Три заключительные главы книги посвящены одной из важнейших областей физической химии поверхностей, а именно адсорбции на твердых телах из газовой фазы. С феноменологической точки зрения ясно, что при контакте твердой и газовой фаз молекулы определенным образом распределяются между обеими фазами. Компонент газовой фазы, заметно адсорбирующийся на поверхности твердого тела, обычно называют адсорбатом. Количественно адсорбцию можно выражать, например, в виде зависимости приведенного к нормальным условиям объема газа, адсорбированного граммом адсорбента, и от давления Р. В общем случае распределение адсорбата между твердой поверхностью и газовой фазой зависит от температуры, и поэтому полное эмпирическое описание адсорбции имеет вид функции о = /(Р, Г). [c.415]

    Таким образом, аналогии Рейнольдса оказывается недостаточно для того, чтобы рассчитать сопротивление массопередачи в области близкой к поверхности раздела фаз, где перенос массы осуществляется в основном за счет молекулярной диффузии. Экспериментально показано что сопротивление этого ламинарного пограничного слоя для турбулентного потока в прямых трубах и между плоскими поверхностями может быть [c.398]

    В хроматографии полимеров стадия, лимитирующая процесс, зависит от выбора системы полимер — сорбент — растворитель, пористости сорбента, доступности его внутренних областей для исследуемых макромолекул, величины их адсорбционного взаимодействия с поверхностью сорбента, скорости потока растворителя, концентрации раствора и температурного режима. Здесь о характере кинетики часто можно судить по коэффициенту распределения вещества между фазами хроматографической системы  [c.19]

    Основная идея термодинамики Гиббса состоит в том, что поверхностная область представляется в виде отдельной фазы, которая обладает своими термодинамическими параметрами, отличными от объемных параметров в обеих фазах. Квантово-статистические исследования рассматривают поверхностный слой как область между двумя фазами, в которой любые термодинамические или какие-либо другие величины изменяются непрерывно на протяжении всего поверхностного слоя, оставаясь постоянными в глубине контактирующих друг с другом фаз. В квантово-статистических представлениях в качестве основной переменной, определяющей поверхностные свойства, выступает плотность свободных электронов металла, распределение которой вблизи поверхности металла неоднородно. Более того, часть электронного облака выступает за пределы поверхности металла, участвуя во взаимодействиях с контактирующей средой. В подобной ситуации трудно себе представить, что электроны проводимости металла ие дадут заметного вклада в свойства границы металл жидкость. Чтобы [c.296]

    Геометрическое место точек среды, в которых в рассматриваемый момент времени фаза волны имеет одно и то же значение, называют волновой поверхностью или фронтом волны. Различным значениям фазы соответствует семейство волновых поверхностей. Если в среде распространяется кратковременное возмущение (импульс), то фронтом волны называют границу между возмущенной и невозмущенной областями среды. Волновые поверхности непрерывно перемещаются в среде и при этом деформируются. В однородной и изотропной среде скорость каждой точки волновой поверхности направлена по нормали к поверхности и численно равна скорости с, называемой фазовой скоростью волны 5. [c.51]

    Таким образом, диаграмма состояния передает связь между параметрами состояния, температурой и давлением при одновременной связи их с изменением функции состояния, характеризующей фазы, образующие систему и их взаимные переходы. Областям существования фаз Ь, V, 5 на диаграмме состояния, т. е. однофазным областям, отвечают соответствующие поверхности на диаграмме изобарно-изотермическго потенциала (см, рис. 41,6), линиям совместного существования попарно твердой и паровой, жидкой и паровой, жидкой и твердой фаз отвечают линии пересечения поверхностей и 0( 1 и и 0(3) соответ- [c.257]

    При нарезании вогнутой решетки на делительной машине угол между формирующей поверхностью резца и заготовкой, а следовательно, и угол блеска плавно меняются по ее ширине. В результате эффективность при определенной длине волны на краях решетки может отличаться приблизительно в два раза [79, 80]. Для уменьшения неравномерности отражения по спектру иногда дискретно изменяют наклон резца в процессе нарезания решетки [81]. Такая решетка состоит из нескольких несогласованных по фазе секций, поэтому ее разрешающая способность не больше, чем у каждой секции в отдельности. У вогнутых решеток для далекой ультрафиолетовой области, имеющих малые углы блеска, это явление ограничивает ширину нарезанной части. Для увеличения последней в работе [82] предложено нарезать такие решетки резцом, имеющим два лезвия. [c.82]

    Общая толщина пленки Н включает в себя однородную часть у и поверхностные фазы ау и ру. Она близка к толщине — расстоянию между разделяющими поверхностями Гиббса. Пленка по сравнению с поверхностным слоем обладает рядом специфических особенностей она имеет большую толщину, содержит однородную область и компоненты, отсутствующие в окружающих объемных фазах. В отличие от поверхности разрыва (по Гиббсу) пленка может существовать даже тогда, когда фазы аир представлены одной и той же физико-химической средой. В горных породах этот случай наблюдается в водонасыщенных коллекторах и глинах. Следует различать толстые и тонкие пленки. К толстым пленкам относятся такие, у которых все экстенсивные свойства аддитивно складываются из их характеристик для внутренней у и поверхностных ау и Ру фаз [59]. Это означает, что толщина пленки настолько большая, что влиянием фазы а на поверхностный слой ру и фазы р на поверхностный слой ау и тем более влиянием а на р можно пренебречь. Для достаточно толстых пленок но из этого еще не следует, что влиянием поверхностных слоев на петро-физические характеристики можно пренебречь. Установлено, например, что электропроводность водоносных, а тем более нефте- [c.11]

    Вся система представляет собой объемные области, в которых объемные фазы разделены либо плоскими (г=1), либо искривленными (z = 0) поверхностями. По расчетам А. И. Русанова [59] эффекты, вызываемые искривлением поверхности разрыва между объемными фазами, становятся существенными лишь при радиусах кривизны г, соизмеримых с толщиной поверхностного слоя т. е. при r< 2,8h <2,8h, где /г — расстояние между разделяющими поверхностями (в понимании Гиббса) h — общая толщина поверхностного слоя. В породах-коллекторах радиус кривизны г пор всегда значительно превосходит толщину поверхностного слоя. Как было показано выше, толщина поверхностного слоя (пленка связанной воды) не превышает десятых долей микрометра, вычисленные же радиусы поровых каналов пород-коллекторов всех классов составляют единицы, десятки и даже сотни микрометров. Учет кривизны раздела объемных фаз имеет смысл при изучении собственно глинистых пород и весьма тонкопористых песчано-алевритовых пород, в которых толщина слоя связанной [c.38]

    Экспериментальные данные, полученные для ряда других систем, позволяют в общем виде описать морфологическую структуру переходного слоя следующим образом [402]. В области контакта двух полимеров наблюдаются морфологические изменения двух типов. Для первого характерным является наличие граничной поверхности и двух слоев по обе стороны от нее. Для второго типа изменений Характерно присутствие одного переходного слоя, ограниченного с двух сторон. Наблюдаемые результаты можно объяснить, исходя из адсорбционных представлений и ограничивающего влияния поверхности наполнителя на процессы структурообразования. При началь1юм контакте двух фаз при формировании смеси адсорбционное взаимодействие макромолекул на межфазной границе приводит к подавлению процессов структурообразования вблизи граничной поверхности. В рассматриваемом случае такое влияние распространяется по обе стороны от граничной поверхности, т. е. каждый полимерный компонент препятствует структу-рообразованию в граничащей, с ним области второго полимерного компонента. В этом случае область между двумя полимерными фазами может рассматриваться, как состоящая из двух контактирующих друг с другом граничных слоев, причем морфологические характеристики каждого одно-"""но лн и ел"яТпУлГе1. о"Гм7т рг е1 КОМПОНеНТНОГО ГраНИЧНОГО СЛОЯ [c.210]

    В отличие от типичных низкомолекулярных систем кристаллизация полимера в выделяющейся кристаллической фазе не является полной. Точнее, следует говорить о несовершенстве кристаллической фазы. Предельным случаем выделения вещества при кристаллизации должно быть образование монокристалла. Но это достигается для низкомолекулярных систем только искусственным путем. Обычно при переходе в область пересыщения раствора начинается спонтанное образование большого числа зародышей, и при завершении отделения кристаллической фазы последняя представляет собою набор кристаллов различной степени дисперсности. Собственно фазовое равновесие здесь уже установилось, но система в целом неравновесна, так как поверхность раздела между фазами не минимальна. Для систем с участием полимера получение монокристаллов представляет особо трудную задачу, которая для ряда полимеров еще не решена. Но даже в том случае, когда удается вырастить монокристалл относительно большого размера, он оказывается дефектным . Фишep отмечает, что степень несовершенства. монокристаллов достигает для классического полимера—полиэтилена 15—30%. Обычно же закристаллизованный полимер имеет очень большое ЧИСЛО кристаллических центров и соответственно этому большое число поверхностных дефектов. Кроме того, молекула полимера может вступать в кристаллические образования локально, а не полностью, в результате чего она может входить одновременно в несколько кристаллитов, а частью остается в промежуточном положении меж- [c.66]

    Процесс сложнее, чем в рассмотренных выше задачах диффузионной кинетики. Кроме скоростей реакции и диффузии,на него влияют коэффициенты распределения веществ между фазами, адсорбция их на поверхности раздела, а при наличии потока или перемешивания — также и поверхностное междуфазовое натяжение, от которого зависит деформация поверхности раздела (при сильном перемешивании она приводит к дроблению фаз, и процесс становится микрогетерогенным). Ряд примеров реакций в несмешивающихся жидких системах исследовал Абрамзон с сотр. [38]. Они ограничились установлением реакционной фазы и выделением кинетической области, но не стремились оценить глубину проникновения и разграничить теоретически области объемной и поверхностной реакций. В процессах рассматриваемого рода наблюдалась зависимость скорости реакции от концентрации типа кривых рис. 16. В этих случаях вещество, от которого зависш скорость реакции, является, видимо, лимитирующим, и реакция должна происходить в адсорбционном слое. Такие реакции на поверхности раздела двух жидкостей отличаются от рассмотренного выше случая нескольких диффундирующих веществ только тем, что исходные вещества диффундируют из разных фаз. В случае же объемной реакции (в том числе и во внутренней диффузионной области) скорость реакции должна зависеть от концентраций обоих веществ. [c.102]

    Проведенное выще обсуждение показывает, что в идеальных системах адгезия между двумя поверхностями раздела довольно велика. На практике работа адгезии между двумя разнородными материалами должна превышать работу когезии менее прочного материала. Подобное положение имеет место и в опытах по трению, когда сдвиг, по-видимому, происходит по менее прочному материалу, а не по самому месту контакта. По мнению Бикермана [47], даже если вероятен разрыв по поверхности раздела, основную роль в этом процессе играет ослабленный граничный слой, представляющий собой тонкий (но полимолекулярный) слой измененного материала, механически менее прочный, чем любая из контактирующих объемных фаз. Ослабленный граничный слой может состоять из окислов, загрязнений и т. д., и, кроме того, он может образовываться и на поверхности структурно измененного, но вполне чистого материала. С этой точки зрения большой интерес представляет сообщение Шорнхорна и Райэна 48] о том, что тщательная очистка пластика значительно ухудшает его сцепление с металлическими подложками. Гуд [49] считает, что ослабленный слой образуется мономолекулярной поверхностью раздела, а если это так, то разрыв клеевых соединений должен действительно проходить по поверхности раздела, а не смежным с ним областям. [c.361]

    Например, согласно [253], цинк начинает окислять водород только после длительной выдержки в реакционной смеси. Так же медленно устанавливается стационарная каталитическая активность меди. Скорость окисления водорода на Ре, Со, N1 особенно резко зависит от состава реакционной смеси при повышении концентрации кислорода скорость окисления водорода заметно падает, хотя фаза окислов, в отличие от таких металлов, как 2п, Т1, V, Сг, Мп, здесь не образуется. Подобные изменения активности металлов при варьировании концентраций реагирующих веществ, так же как и гистерезисные явления при окислении водорода на платине и некоторых других металлах, связаны, очевидно, с поглощением реактантов катализаторами [264]. Например, уменьшение скорости окисления водорода на никеле сопровождается изменением порядка по кислороду от первого к нулевому, что сеи-детельствует о насыщении поверхности катализатора кислородом. Именно это обратимое насыщение поверхности слоя контакта и обусловливает столь резкий спад активности (у N1 и Ре — в 12,5 раза, у Со — в 3,4 раза). В зависимости от природы металла этот спад наступает при разных концентрациях кислорода в смеси (для массивных Ре, N1, Со — при 0,06 0,1 0,3% соответственно). Существенное значение имеет также и структура катализатора. Например, на пористом катализаторе, содержащем 40—70% N1, падение скорости окисления водорода не наблюдается даже при концентрации кислорода 2,5% и температуре 40° С [297]. Это обусловлено протеканием реакции на пористых контактах в данных условиях во внешнедиффузионной области, исключающей насыщение поверхности катализатора кислородом. Несмотря на то что реакция взаимодействия кислорода с водородом в избытке последнего хорошо протекает при комнатной температуре на ряде контактов, для очистки водородсодержащих газов от примеси кислорода наиболее широко применяются никелевые катализаторы. Это связано, с одной стороны, с тем, что никель намного (на 3 порядка) активнее С03О4, а с другой — с тем, что он лишь в 5—6 раз менее активен, чем дорогие и дефицитные платина и палладий [296]. В отличие от металлов подгруппы железа, платина и палладий эффективно окисляют водород и в его стехиометрической смеси с кислородом [295]. В избытке же кислорода проявляется различие между этими металлами. Активность палладия падает с ростом концентрации кислорода, в то время как скорость окисления водорода на платине до 25 % -го избытка кислорода даже растет. Поэтому для низкотемпературной очистки инертных газов от примеси кислорода, когда в очищаемую смесь добавляется практически стехиометрическое количество водорода, целесообразно использовать палладиевый катализатор, а для очистки кислорода от водорода пригодны только платиновые контакты [296]. [c.245]


Смотреть страницы где упоминается термин Область между фазами поверхности: [c.241]    [c.46]    [c.164]    [c.67]    [c.154]    [c.72]    [c.226]    [c.187]    [c.26]    [c.560]   
Смотреть главы в:

Физическая химия. Т.1 -> Область между фазами поверхности




ПОИСК







© 2025 chem21.info Реклама на сайте